Supplementary Material

n.m.	Description	O_h	T _h	Т	
	of vibration				
v_1	v_{s} Mn-O	$A_{1g}(R)$	$A_{g}(R)$	A (R)	
v_2	v Mn-O	$E_g(R)$	$E_{g}(R)$	E (R)	
V3	v Mn-O	$F_{1u}(IR)$	$F_u(IR)$	F	
				(R,IR)	
ν ₄	δ O-Mn-O	$F_{1u}(IR)$	$F_{u}(IR)$	F	
				(R,IR)	
v ₅	δ O-Mn-O	$F_{2g}(R)$	$F_{g}(R)$	F	
		-	-	(R,IR)	
v ₆	δ O-Mn-O	F_{2u} (n.a.)	$F_u(IR)$	F	
				(R,IR)	

Table S1. Normal modes (n.m.) of MnO_6 for group O_h , their description and correlation for the species of O_h group and its subgroups T_h and T including the activity in Raman and infrared.

R = Raman allowed; IR: infrared active; n.a.: not allowed

Figure S2. DFT frequencies at the UB3LYP/ 6-311+G(d,p) level of theory for the octadeca-hydrate of Mn^{2+} , $[Mn(OH_2)_{18}]^{2+}$.

frequ	ín			mode	frequ	in			
cm^{-1}	D2O				cm ⁻¹	D2O			
29.9		F	i.r. Ra	rot. (H ₂ O) ₃	565.2		А	Ra	τ,ρ ΗΟΗ
42.8		Е	Ra	trans. $(H_2O)_3$	587.0		F	i.r. Ra	τ,ρ ΗΟΗ
43.8		А	Ra	rot. $(H_2O)_3$	620.1		А	Ra	τ,ρ ΗΟΗ
51.5		F	i.r. Ra	trans. $(H_2O)_3$, MnO ₆	652.1		F	i.r. Ra	ω,τ ΗΟΗ
74.8		F	i.r. Ra	δ OMnO + trans. H ₂ O	671.5		Е	Ra	τHOH
87.8	84.2	F	i.r. Ra	δ OMnO + trans. H ₂ O	699.4		F	i.r. Ra	ω,τ ΗΟΗ
102.4	97.2	F	i.r. Ra	δ OMnO + trans. H ₂ O	774.3		F	i.r. Ra	ρ,τ ΗΟΗ
115.3		Е	Ra	v_{s} OMnO + trans. H ₂ O	820.1		F	i.r. Ra	ρ,τ ΗΟΗ
132.5	124.6	F	i.r. Ra	δ OMnO + trans. H ₂ O	853.9		Α	Ra	ωHOH
142.5		F	i.r. Ra	δ OMnO + trans. H ₂ O	857.2		F	i.r. Ra	ωHOH
145.2		Α	Ra	trans. $(H_2O)_3$	1633.3		F	i.r. Ra	δ ΗΟΗ
157.1		F	i.r. Ra	δ OMnO + trans. H ₂ O	1634.0		Е	Ra	δ ΗΟΗ
183.6		F	i.r. Ra	δ OMnO + trans. H ₂ O	1634.2		F	i.r. Ra	δ ΗΟΗ
184.3		Е	Ra	trans. H ₂ O	1634.8		F	i.r. Ra	δ ΗΟΗ
205.1		F	i.r. Ra	trans. H ₂ O	1635.3		Α	Ra	δ ΗΟΗ
205.8		Α	Ra	trans. H ₂ O	1697.8		Е	Ra	δ ΗΟΗ
236.4		F	i.r. Ra	δ OMnO + trans. H ₂ O	1701.9		F	i.r. Ra	δ ΗΟΗ
248.3		F	i.r. Ra	δ OMnO + trans. H ₂ O	1715.1		А	Ra	δ ΗΟΗ
281.9	280.6	Е	Ra	v _s Mn-O	3560.2		Е	Ra	$\nu_{s}OH$
334.8		F	i.r. Ra	ρΗΟΗ	3568.1		F	i.r. Ra	$\nu_{s}OH$
339.0	328.3	Α	Ra	v _s Mn-O	3597.4		А	Ra	v _s OH
339.1		F	i.r. Ra	ρ HOH+v _{as} Mn-O	3600.3		F	i.r. Ra	v_{s} , v_{as} OH
348.8	326.4	F	i.r. Ra	v _{as} Mn-O	3604.9		F	i.r. Ra	$v_{s}, v_{as} OH$
351.3	341.9	Е	Ra	р НОН	3609.5		А	Ra	v _s OH
398.3	370.4	F	i.r. Ra	ρ HOH + v_{as} OMnO	3638.3		F	i.r. Ra	$v_{s}, v_{as} OH$
418.7		Α	Ra	ωHOH	3662.6		Е	Ra	$\nu_{s}OH$
442.1		F	i.r. Ra	ρ,ω ΗΟΗ	3669.7		F	i.r. Ra	$v_{s}, v_{as} OH$
463.7		F	i.r. Ra	ρ,τ ΗΟΗ	3675.5		F	i.r. Ra	vas,vs OH
467.8		Е	Ra	р НОН	3854.2		F	i.r. Ra	$v_{as}OH$
511.2		F	i.r. Ra	τНОН	3854.7		F	i.r. Ra	$v_{as}OH$
520.9		F	i.r. Ra	ωHOH	3854.8		Е	Ra	$v_{as}OH$
542.2		Е	Ra	τHOH	3858.3		F	i.r. Ra	$v_{as}OH$
550.5		F	i.r. Ra	ρ,τ ΗΟΗ	3859.0		А	Ra	$v_{as}OH$

 v_s : symmetric stretching, v_{as} : antisymmetric stretching, δ : deformating, ρ : rocking, ω : wagging, τ : twisting; rot. and trans. means restricted rotations and translations

Table S3. DFT frequencies at the UB3LYP/ 6-311+G(d,p) level of theory for the octadecahydrate of Mn^{2+} , $[Mn(OH_2)_{18}]^{2+}$ with solvation shell (PCM model).

frequ.	ín			mode	frequ.	in			
cm ⁻¹	D2O				cm ⁻¹	D2O			
13.6		F	i.r. Ra	rot. (H ₂ O) ₃	510.6		Е	Ra	ω,τ ΗΟΗ
30.8		А	Ra	rot. (H ₂ O) ₃	573.9		F	i.r. Ra	ω,τ ΗΟΗ
39.0		Е	Ra	trans. $(H_2O)_3$	610.9		F	i.r. Ra	ω,τ ΗΟΗ
39.9		F	i.r. Ra	trans. $(H_2O)_3$, MnO ₆	627.2		Α	Ra	τHOH
62.4		F	i.r. Ra	δ OMnO + trans. H ₂ O	655.7		F	i.r.Ra	τHOH
76.2		F	i.r. Ra	δ OMnO + rot. H ₂ O	680.5		Е	Ra	au HOH
81.5		F	i.r. Ra	δ OMnO + rot. H ₂ O	735.7		F	i.r. Ra	τHOH
83.8		Е	Ra	$v_s OMnO + rot. H_2O$	740.1		Α	Ra	τHOH
93.6	86.7	F	i.r. Ra	δ OMnO + trans. H ₂ O	786.3		F	i.r.Ra	ρ,τ ΗΟΗ
109.3	103.3	F	i.r. Ra	δ OMnO + trans. H ₂ O	842.8		F	i.r. Ra	ρ,τ ΗΟΗ
133.8		Е	Ra	$v_s OMnO + rot. H_2O$	1559.1		F	i.r. Ra	δНОН
141.9	136.7	F	i.r. Ra	δ OMnO + trans. H ₂ O	1559.5		E	Ra	δHOH
155.9		А	Ra	trans. H ₂ O	1559.5		F	i.r. Ra	δНОН
160.7		F	i.r. Ra	δ OMnO + trans. H ₂ O	1566.9		Α	Ra	δНОН
187.6		F	i.r. Ra	trans. H ₂ O	1567.9		F	i.r. Ra	δНОН
187.8		А	Ra	trans. H ₂ O	1674.9		E	Ra	δНОН
232.9		F	i.r. Ra	δ OMnO + rot. H ₂ O	1683.1		F	i.r. Ra	δ ΗΟΗ
241.5		F	i.r. Ra	δ OMnO + rot. H ₂ O	1703.1		Α	Ra	δ ΗΟΗ
249.0		Е	Ra	δ OMnO + rot. H ₂ O	3488.9		E	Ra	$\nu_{s}OH$
254.8		F	i.r. Ra	δ OMnO + rot. H ₂ O	3495.3		F	i.r. Ra	$\nu_{s} OH$
258.2		F	i.r. Ra	δ OMnO + rot. H ₂ O	3523.4		Α	Ra	$\nu_{s}OH$
299.5	287.0	Е	Ra	v _s Mn-O	3529.5		F	i.r. Ra	$v_{s}, v_{as} OH$
313.3		Α	Ra	v_{s} Mn-O + ρ HOH	3533.9		F	i.r. Ra	$v_{s}, v_{as} OH$
313.6		F	i.r. Ra	ρ НОН	3580.5		А	Ra	$\nu_{s}OH$
342.3		F	i.r. Ra	v_{as} Mn-O + ρ HOH	3586.0		F	i.r. Ra	$\nu_{s}OH$
346.6		F	i.r.Ra	ρΗΟΗ	3599.0		Е	Ra	v _s OH
359.3	329.1	А	Ra	v _s Mn-O	3602.2		F	i.r. Ra	$v_{s}, v_{as} OH$
361.3		Е	Ra	ρ, ω ΗΟΗ	3605.0		F	i.r. Ra	$v_{s}, v_{as} OH$
364.4	328.4	F	i.r. Ra	v_{as} Mn-O + ρ , ω HOH	3659.0		А	Ra	$v_{as}OH$
463.9		F	i.r. Ra	ρ, ω ΗΟΗ	3695.2		F	i.r. Ra	$v_{as}OH$
479.2		F	i.r. Ra	ρ, ω ΗΟΗ	3670.7		Е	Ra	$v_{as}OH$
492.3		Α	Ra	ρΗΟΗ	3671.2		F	i.r. Ra	$v_{as}OH$
500.9		F	i.r. Ra	ρ,τ ΗΟΗ	3672.1		F	i.r. Ra	$v_{as}OH$

 v_s : symmetric stretching, v_{as} : antisymmetric stretching, δ : deforming, ρ : rocking, ω : wagging, τ : twisting; rot. and trans. means restricted rotations and translations

Figure S1. Isotropic Raman band v O-H stretch of HDO/D₂O of a 1.96 molL⁻¹ Mn(ClO₄)₂ in heavy water with 2% HDO. Given are both component bands at 3438 cm⁻¹ and at 3584 cm⁻¹.

Figure S2. Raman spectrum (polarized, depolarized and isotropic scattering is given) of an aqueous 0.0409 mol·L⁻¹ NaNO₃ solution. The nitrate bands are explained in the text. Note, that the sharp band at 1658 cm⁻¹ is due to an overtone of NO₃⁻, 2 x v₂ and the broad band at 1638 cm⁻¹ is due to δ H₂O.

Figure S3. Polarized overview Raman spectrum of a 1.73 molL⁻¹ Mn(NO₃)₂ solution at 23 °C. The inset shows the wavenumber region from 200-2000 cm⁻¹ at an enlarged scale. The nitrate bands are explained in the text. Note, that the sharp band at 1659 cm⁻¹ is due to an overtone of NO₃⁻, 2 x v₂, overlapping the water mode, δ H₂O at 1638 cm⁻¹ almost completely. The very broad O-H stretching mode of H₂O peaks at 3420 cm⁻¹.