Supporting Information

Syntheses of Pd(II)/Pt(II) Complexes with non-Chelating 4-Pyridylselenolate Ligand ranging from Mononuclear to Macrocyclic Structures and their utility as Catalysts in Suzuki C–C Coupling Reaction

K. V. Vivekananda,^a S. Dey,^{*a} A. Wadawale,^a N. Bhuvanesh^b and V. K. Jain^{*a}

^aChemistry Division, Bhabha Atomic Research Centre, Mumbai- 400 085, India ^bDepartment of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, USA

Supporting Information

General Procedures: Solvents were dried and distilled prior to use by standard methods. All reactions were carried out in Schlenk flasks under a nitrogen atmosphere. 4-Bromopyridine, 1-(4-pyridyl)-pyridinium chloride hydrochloride, silver triflate, sodium borohydride were used as purchased from commercial sources without further purification. The complexes *cis*- $[MCl_2(PR_3)_2]$, *cis*- $[MCl_2(P^{\circ}P)]$, $[M_2Cl_2(\mu-Cl)_2(PR_3)_2]$ (M = Pd, Pt; PR_3 = PEt_3, PMe_2Ph, PPh_3; P^P = dppm, dppe, dppp)^{s1-3} and *cis*- $[Pt(PEt_3)_2(OTf)_2]^{s4}$ (OTf = CF_3SO_3⁻) were prepared according the literature methods. Melting points were determined in capillary tubes and are uncorrected. Elemental analysis for C, H, N and S were carried out on an Carlo-Erba EA-1110 CHNS Analyser. Absorption spectra were recorded on a JASCO aaaaaV-630 spectrophotometer. Infrared spectra were recorded with a JASCO FTIR-6100 spectrometer. Mass spectra were recorded on a Waters Q-TOF micro (YA-105) time of flight mass spectrometer. ¹H, ¹³C{¹H}, ³¹P{¹H}, ⁷⁷Se{¹H} and ¹⁹⁵Pt{¹H} NMR spectra were recorded on a Bruker Avance II-300 NMR spectrometers operating at 300, 75.47, 121.5, 57.25, 64.29 MHz, respectively. Chemical shifts are relative to internal chloroform peak (δ 7.26 ¹H and

77.0 for ¹³C), external 85% H₃PO₄ for ³¹P{¹H}, external Ph₂Se₂ in CDCl₃ for ⁷⁷Se{¹H} (δ 463 relative to Me₂Se₂ as 0 ppm) and Na₂PtCl₆ for ¹⁹⁵Pt{¹H}.

Crystallography

A. Crystals of *trans*-[Pt(4-SeC₅H₄N)₂(PEt₃)₂] were grown from a dichloromethanehexane mixture at room temperature. Data were collected as outlined in Table 1. Cell parameters were obtained from 60 data frames taken at widths of 0.5° . Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX2. Data were collected for Lorentz and polarization factors, and using SADABS.^{s6} absorption and crystal decay effects. The structure was solved by direct methods using SHELXTL (XS).^{s7} All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed in idealized positions, and refined using a riding model. The parameters were refined by weighted least squares refinement on F^2 to convergence.^{s7}

B. Crystals of *trans*-[PtCl(4-SeC₅H₄N)(PEt₃)₂] were grown in a tightly sealed round bottomed flask kept at -5°C. Data were collected as outlined in Table 1. Cell parameters were obtained from 60 data frames taken at widths of 0.5° . Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX2. Data were collected for Lorentz and polarization factors, and using SADABS.^{s6} absorption and crystal decay effects. The structure was solved by direct methods using SHELXTL.^{s7} All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were refined by weighted least squares refinement on F^2 to convergence.^{s7}

C. Crystals of $[Pt(4-SeC_5H_4N)_2(dppp)]$ were grown by slow evaporation of solvent mixture of acetone-hexane at room temperature. Data were collected as outlined in Table 1. Cell parameters were obtained from 180 data frames taken at widths of 0.5° . Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX2. TWINABS was used for adsorption correction as well as to separate one twin component. The integration method employed a three dimensional profiling algorithm and all the data were collected for Lorentz and polarization factors, as well as for crystal decay effects. The structure was solved by direct methods using SHELXTL.^{s7} All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed in idealized positions, and were set riding on the parent atom. The parameters were refined by weighted least squares refinement on F^2 to convergence.^{s7} Olex2 was employed for the final data presentation and structure plots.^{s8}

D. Crystals of *trans*-[Pd(4-SeC₅H₄N)₂(PPh₃)₂] were grown in a tightly sealed round bottomed flask kept at -5°C. Data were collected as outlined in Table 1. Cell parameters were obtained from 60 data frames taken at widths of 0.5°. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX2. Data were collected for Lorentz and polarization factors, and using SADABS.^{s6} absorption and crystal decay effects. The structure was solved by direct methods using SHELXTL (XS).^{s7} All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed in idealized positions, and refined using a riding model. The parameters were refined by weighted least squares refinement on F^2 to convergence.^{s7} Olex2 was employed for the final data presentation and structure plots.^{s8}

E. Crystals of *trans*- $[PdCl(4-SeC_5H_4N)(PPh_3)_2]$ were grown from dichloromethanehexane solvent mixture at room temperature. Data were collected as outlined in Table 1. Cell parameters were obtained from 180 data frames taken at widths of 0.5° . Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX2. The integration method employed a three dimensional profiling algorithm and all the data were collected for Lorentz and polarization factors, as well as for crystal decay effects. Finally the data was merged and scaled to produce a suitable data set SADABS.^{s6} was used to correct the data for absorption effects. The structure was solved by direct methods using SHELXTL.^{s7} All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed in idealized positions, and refined using a riding model. The parameters were refined by weighted least squares refinement on F^2 to convergence.^{s7} X-seed was employed for the final data presentation and structure plots.^{s9}

F. Crystals of [Pd(4-SeC₅H₄N)₂(dppe)] were grown by slow evaporation of solvent mixture of acetone-hexane at room temperature. Crystal data were collected as outlined in Table 1. Cell parameters were obtained from 180 data frames taken at widths of 0.5°. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX2. TWINABS was used for adsorption correction as well as to separate one twin component. The integration method employed a three dimensional profiling algorithm and all the data were collected for Lorentz and polarization factors, as well as for crystal decay effects. Finally the data was merged and scaled to produce a suitable data set. TWINABS was used to correct the data for absorption effects as well as to separate the twin components. The structure was solved by direct methods using SHELXTL.⁵⁷ All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in idealized positions, and were set riding on the parent atom. The parameters were

refined by weighted least squares refinement on F^2 to convergence.^{s7} Olex2 was employed for the final data presentation and structure plots.^{s8}

G. Crystals of $[PdCl(4-SeC_5H_4N)(PPh_3)]_2$ were grown from dichloromethane-hexane solvent mixture at room temperature. Data were collected as outlined in Table 1. Cell parameters were obtained from 60 data frames taken at widths of 0.5°. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX2. The integration method employed a three dimensional profiling algorithm and all the data were collected for Lorentz and polarization factors, as well as for crystal decay effects. Finally the data was merged and scaled to produce a suitable data set. The absorption correction program SADABS.⁵⁶ was employed to correct the data for absorption effects. The structure was solved by direct methods using SHELXTL (XS).⁸⁷ All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed in idealized positions, and were set riding on the respective parent atoms. The parameters were refined by weighted least squares refinement on F^2 to convergence.⁸⁷ Olex2 was employed for the final data presentation and structure plots.⁵⁸

H. The crystals of $[PdCl(SeC_5H_4N)(PEt_3)]_3$ and $[PtCl(SeC_5H_4N)(PEt_3)]_3$ were isolated from dichloromethane-hexane solvent mixture and CDCl₃ solution (in NMR tube), respectively at room temperature.

References:

- (s1) F. R. Hartley, *The Chemistry of Platinum and palladium*, Wiley, New York 1973.
- (s2) J. Chatt and R. G. Willkins, J. Chem. Soc., 1951, 2532-2533.
- (s3) A. C. Smithies, M. Rycheck and M. Orchin, J. Organomet. Chem., 1968, 12, 199-202.
- (s4) P. J. Stang, D. H. Cao, S. Saito and A. M. Arif, J. Am. Chem. Soc., 1995, 117, 6273-6283.

- (s5) APEX2 "Program for Data Collection and Integration on Area Detectors" BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
- (s6) SADABS, Sheldrick, G.M. "Program for Absorption Correction of Area Detector Frames", BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
- (s7) G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
- (s8) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, "OLEX2: A Complete Structure Solution, Refinement and Analysis Program", J. Appl. Cryst., 2009, 42, 339-341.
- (s9) L. J. Barbour (2001) "X-Seed (version 2.0): A Software Tool for Supramolecular Crystallography" *J. Supramol. Chem.*, 2001, **1**, 189-191.

Compound	[PdCl(4-	[PtCl(4-	[Pd(PPh ₃) ₂ (4-	[Pt(PEt ₃) ₂ (4-
	$SeC_5H_4N)(PPh_3)_2]$	$SeC_5H_4N)(PEt_3)_2]$	$SeC_5H_4N)_2$]	$SeC_5H_4N)_2]$
	•acetone			
Chemical	C44H40CINOP2Pd	C ₁₇ H ₃₄ ClNP ₂ PtSe	$C_{46}H_{38}N_2P_2PdSe_2$	$C_{22}H_{38}N_2P_2PtSe_2$
formula	Se			
Formula	881.52	623.89	945.04	745.49
weight				
Crystal Size	$0.12 \times 0.06 \times 0.03$	$0.42 \times 0.31 \times 0.25$	$0.50 \times 0.43 \times 0.16$	0.43 $ imes$ 0.41 $ imes$
(mm^3)				0.24
Diffractometer	BRUKER	BRUKER APEX 2	BRUKER APEX	BRUKER APEX
	GADDS		2	2
T/K	110(2)	110(2)	110(2)	110(2)
λ/Å	1.54178	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic
Space group	P2(1)/n	P2(1)/n	P2(1)	Pca2(1)
a/Å	10.4301(3)	14.4320(6)	10.1330(11)	19.975(3)
b/Å	16.8918(6)	10.6073(5)	12.8723(14)	9.0763(15)
c/Å	43.8939(14)	15.4103(7)	15.0542(16)	14.380(2)
α/°	90	90	90	90
$\beta/^0$	93.019(2)	105.0360(10)	91.1260	90
$\gamma/^{0}$	90	90	90	90
$V/Å^3$	7722.6(4)	2278.31(18)	1963.2(4)	2607.1(7)
$\rho_{calc}, g \text{ cm}^{-3}$	1.516	1.819	1.599	1.899
Ζ	8	4	2	4
μ/mm^{-1}	6.646	8.014	2.444	8.309
Reflections	135477	47227	30774	27666
collected				
Data/restraints	11447 / 0 / 923	5237 / 2 / 222	8936 / 1 / 479	5919 / 15 / 262
/parameters				
Final R1,wR2	R1 = 0.0382,	R1 = 0.0162,	R1 = 0.0440,	R1 = 0.0238,
indices	wR2 = 0.0863	wR2 = 0.0396	wR2 = 0.1128	wR2 = 0.0499
R_1 , wR_2 (all	R1 = 0.0511,	R1 = 0.0177,	R1 = 0.0485,	R1 = 0.0281,
data)	wR2 = 0.0894	wR2 = 0.0405	wR2 = 0.1162	wR2 = 0.0511
Largest	0.408 and -0.822	0.675 and -0.985	3.155 and -0.849	1.445 and -1.015
diff.peak &				
hole [eÅ ⁻³]				

Table S1. Crystallographic and structure refinement data for complexes

Compound	[Pd(dppe)(4-	[Pt(dppp)(4-	[PdCl(4-
	$SeC_5H_4N)_2]$ ·2H ₂ O	$SeC_{5}H_{4}N)_{2}] \cdot 0.5H_{2}O$	$SeC_5H_4N)(PPh_3)]_2$
Chemical formula	$C_{36}H_{36}N_2O_2P_2PdSe_2$	$C_{37}H_{35}N_2O_{0.5}P_2PtSe_2$	$C_{46}H_{38}Cl_2N_2P_2Pd_2Se_2$
Formula weight	854.93	930.62	1122.34
Crystal Size (mm ³)	$0.13 \times 0.08 \times 0.03$	$0.06 \times 0.05 \times 0.03$	$0.25 \times 0.18 \times 0.12$
Diffractometer	BRUKER GADDS	BRUKER GADDS	BRUKER APEX 2
T/K	110(2)	110(2)	110(2)
λ/Å	1.54178	1.54178	0.71073
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P2(1)/c	P-1	P2(1)/n
a/Å	15.7931(8)	10.5487(12)	10.1799(12)
b/Å	10.5303(5)	10.7006(13)	14.6690(17)
c/Å	21.2888(11)	14.9796(16)	14.8568(17)
α/°	90	91.771(9)	90
$\beta/^{0}$	105.650(3)	94.027(9)	93.4050
$\gamma/^{0}$	90	95.391(9)	90
$V/Å^3$	3409.2(3)	1678.0(3)	2214.6(4)
$\rho_{\rm calc}, g {\rm cm}^{-3}$	1.666	1.842	1.683
Ζ	4	2	2
μ/mm^{-1}	7.999	11.443	2.683
Reflections collected	9607	9931	24421
Data/restraints/para	5063 / 0 / 406	9942 / 0 / 407	5068 / 0 / 253
meters			
Final R1, <i>w</i> R2	R1 = 0.0347,	R1 = 0.0373,	R1 = 0.0178,
indices	wR2 = 0.0828	wR2 = 0.1104	wR2 = 0.0437
R_1 , w R_2 (all data)	R1 = 0.0446,	R1 = 0.0423,	R1 = 0.0193,
	wR2 = 0.0848v	wR2 = 0.1151	wR2 = 0.0443
Largest diff.peak &	1.067 and -0.774	1.065 and -1.036	0.492 and -0.445
hole [eÅ ⁻³]			

Table S2. Crystallographic and structure refinement data for comple	xes
---	-----

Compound	[PdCl(4-	[PtCl(4-
	$SeC_5H_4N)(PEt_3)]_3$	SeC ₅ H ₄ N)(PEt ₃)] ₃ •CHCl ₃
Chemical formula	$C_{33}H_{57}Cl_3N_3P_3Pd_3Se_3$	$C_{34}H_{58}Cl_6N_3P_3Pt_3Se_3$
Formula weight	1251.16	1636.59
Crystal Size (mm ³)	$0.25 \times 0.20 \times 0.10$	$0.30 \times 0.15 \times 0.15$
Diffractometer	RIGAKU AFC7S	RIGAKU AFC7S
T/K	298 (2)	298 (2)
λ/Å	0.71069	0.71069
Crystal system	Monoclinic	Monoclinic
Space group	P 1 21/n 1	P 1 21/a 1
a/Å	14.2500(12)	14.501(3)
b/Å	13.984(6)	24.574(3)
c/Å	24.400(5)	14.763(4)
α/°	90	90
$\beta/^{0}$	105.330(13)	102.72(2)
γ/ ⁰	90	90
V/Å ³	4689(2)	5131.7(18)
$\rho_{\text{calc}}, \text{ g cm}^{-3}$	1.772	2.026
Z	4	4
µ/mm ⁻¹	3.766	10.567
Reflections collected	14523	14086
Data/restraints/parameters	10760/20/410	11757/63/363
Final R1,wR2 indices	0.0745, 0.1409	0.0696, 0.1331
R_1 , w R_2 (all data)	0.1803, 0.3474	0.2161, 0.3843
Largest diff.peak & hole [eÅ ⁻³]	1.032 & -0.886	1.000, -1.247

Table S3. Crystallographic and structure refinement data for complexes

Figure S1. ³¹P{¹H} NMR spectra of $[PdCl(4-SeC_5H_4N)(PEt_3)]_n$ in CDCl₃

Figure S2. ⁷⁷Se{¹H} NMR spectra of [PdCl(4-SeC₅H₄N)(PEt₃)]_n in CDCl₃

Figure S3. ³¹P{¹H} NMR spectra of [PdCl(4-SeC₅H₄N)(PPh₃)]_n in CDCl₃

Figure S4. ${}^{31}P{}^{1}H$ NMR spectra of [PtCl(4-SeC₅H₄N)(PEt₃)]_n in CDCl₃

Figure S5. ⁷⁷Se{¹H} NMR spectra of [PtCl(4-SeC₅H₄N)(PEt₃)]_n in CDCl₃

Figure S6. ¹⁹⁵Pt{¹H} NMR spectra of [PtCl(4-SeC₅H₄N)(PEt₃)]_n in CDCl₃

Figure S7. Molecular structure of *trans*-[PtCl(-SeC₅H₄N)(PEt₃)₂] (**4b**) ellipsoids drawn at 50% probability. (Hydrogen atoms are omitted for clarity)

Figure S8. Molecular structure of *trans*- $[Pd(4-SeC_5H_4N)_2(PPh_3)_2]$ (**5a**) ellipsoids drawn at 50% probability. (Hydrogen atoms are omitted for clarity)

Figure S9. Molecular structure of cis-[Pt(4-SeC₅H₄N)₂(dppp)]·0.5H₂O (**6c**·0.5H₂O) ellipsoids drawn at 50% probability.