## Synthesis, Structure, Spectral and Electrochemical Properties of B(OR)<sub>2</sub>-Smaragdyrin Complexes

Hemanta Kalita,<sup>a</sup> Way-Zen Lee<sup>b</sup> and Mangalampalli Ravikanth<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400076, India

<sup>b</sup>Instrumentation Center, Department of Chemistry, National Taiwan Normal University,88 Sec.

4 Ting-Chow Road, Taipei, 11677, Taiwan

## E-mail: ravikanth@chem.iitb.ac.in

| 1. | ES-MS spectrum of compound 4                      | <b>S1</b>  |
|----|---------------------------------------------------|------------|
| 2. | <sup>1</sup> H NMR spectrum of compound <b>4</b>  | <b>S2</b>  |
| 3. | <sup>11</sup> B NMR spectrum of compound <b>4</b> | <b>S2</b>  |
| 4. | <sup>13</sup> C NMR spectrum of compound <b>4</b> | <b>S3</b>  |
| 5. | ES-MS spectrum of compound 5                      | <b>S4</b>  |
| 6. | <sup>1</sup> H NMR spectrum of compound <b>5</b>  | <b>S5</b>  |
| 7. | <sup>11</sup> B NMR spectrum of compound <b>5</b> | <b>S5</b>  |
| 8. | <sup>13</sup> C NMR spectrum of compound <b>5</b> | <b>S6</b>  |
| 9. | ES-MS spectrum of compound 6                      | <b>S7</b>  |
| 10 | <sup>1</sup> H NMR spectrum of compound <b>6</b>  | <b>S8</b>  |
| 11 | <sup>11</sup> B NMR spectrum of compound <b>6</b> | <b>S8</b>  |
| 12 | <sup>13</sup> C NMR spectrum of compound <b>6</b> | <b>S9</b>  |
| 13 | • ES-MS spectrum of compound 7                    | <b>S10</b> |
| 14 | <sup>1</sup> H NMR spectrum of compound <b>7</b>  | <b>S11</b> |
| 15 | <sup>11</sup> B NMR spectrum of compound <b>7</b> | <b>S11</b> |
| 16 | <sup>13</sup> C NMR spectrum of compound <b>7</b> | <b>S12</b> |
| 17 | . HR-MS spectrum of compound 8                    | <b>S13</b> |

| <b>18.</b> <sup>1</sup> H NMR spectrum of compound <b>8</b>                         | <b>S14</b> |
|-------------------------------------------------------------------------------------|------------|
| <b>19.</b> <sup>11</sup> B NMR spectrum of compound <b>8</b>                        | <b>S14</b> |
| <b>20.</b> <sup>13</sup> C NMR spectrum of compound <b>8</b>                        | <b>S15</b> |
| <b>21.</b> HR-MS spectrum of compound <b>9</b>                                      | <b>S16</b> |
| <b>22.</b> <sup>1</sup> H NMR spectrum of compound <b>9</b>                         | <b>S17</b> |
| <b>23.</b> <sup>11</sup> B NMR spectrum of compound <b>9</b>                        | <b>S17</b> |
| <b>24.</b> <sup>13</sup> C NMR spectrum of compound <b>9</b>                        | <b>S18</b> |
| <b>25.</b> ES-MS spectrum of compound <b>10</b>                                     | <b>S19</b> |
| <b>26.</b> <sup>1</sup> H NMR spectrum of compound <b>10</b>                        | <b>S20</b> |
| <b>27.</b> <sup>11</sup> B NMR spectrum of compound <b>10</b>                       | <b>S20</b> |
| <b>28.</b> <sup>13</sup> C NMR spectrum of compound <b>10</b>                       | S21        |
| <b>29.</b> HR-MS spectrum of compound <b>11</b>                                     | S22        |
| <b>30.</b> <sup>1</sup> H NMR spectrum of compound <b>11</b>                        | S23        |
| <b>31.</b> <sup>11</sup> B NMR spectrum of compound <b>11</b>                       | S23        |
| <b>32.</b> <sup>13</sup> C NMR spectrum of compound <b>11</b>                       | S24        |
| <b>33.</b> Absorption spectra of compounds <b>5-7</b> recorded in CHCl <sub>3</sub> | S25        |
| <b>34.</b> Absorption spectra of compounds <b>9-11</b> recorded in $CHCl_3$         | <b>S26</b> |
| <b>35.</b> Emission spectra of compounds <b>4-7</b> recorded in CHCl <sub>3</sub>   | <b>S27</b> |
| <b>36.</b> Emission spectra of compounds <b>9-11</b> recorded in CHCl <sub>3</sub>  | <b>S28</b> |
| <b>37.</b> Cyclic voltammograms of compounds <b>5-7</b> recorded in $CH_2Cl_2$      | S29        |
| <b>38.</b> Cyclic voltammograms of compounds <b>9-11</b> recorded in $CH_2Cl_2$     | <b>S30</b> |
| <b>39.</b> Crystallographic data for compound <b>10</b>                             | <b>S31</b> |





Figure S1. ES-MS spectrum of compound 4.





Figure S2. <sup>1</sup>H NMR spectrum of compound 4 recorded in CDCl<sub>3</sub>.



Figure S2. <sup>11</sup>B NMR spectrum of compound 4 recorded in CDCl<sub>3</sub>.



Figure S3. <sup>13</sup>C NMR spectrum of compound of 4 recorded in CDCl<sub>3</sub>.





Figure S4. ES-MS spectrum of compound 5.





Figure S5. <sup>1</sup>H NMR spectrum of compound 5 recorded in CDCl<sub>3</sub>.



Figure S5. <sup>11</sup>B NMR spectrum of compound 5 recorded in CDCl<sub>3</sub>.



Figure S6. <sup>13</sup>C NMR spectrum of compound of 5 recorded in CDCl<sub>3</sub>.





Figure S7. ES-MS spectrum of compound 6.





Figure S8. <sup>1</sup>H NMR spectrum of compound 6 recorded in CDCl<sub>3</sub>.



Figure S8. <sup>11</sup>B NMR spectrum of compound 6 recorded in CDCl<sub>3</sub>.



Figure S9. <sup>13</sup>C NMR spectrum of compound of 6 recorded in CDCl<sub>3</sub>.





Figure S10. ES-MS spectrum of compound 7.





Figure S11. <sup>1</sup>H NMR spectrum of compound 7 recorded in CDCl<sub>3</sub>.



Figure S11. <sup>11</sup>B NMR spectrum of compound 7 recorded in CDCl<sub>3</sub>.



Figure S12. <sup>13</sup>C NMR spectrum of compound of 7 recorded in CDCl<sub>3</sub>.





Figure S13. HR-MS spectrum of compound 8.





Figure S14. <sup>1</sup>H NMR spectrum of compound 8 recorded in CDCl<sub>3</sub>.



Figure S14. <sup>11</sup>B NMR spectrum of compound 8 recorded in CDCl<sub>3</sub>.



Figure S15. <sup>13</sup>C NMR spectrum of compound of 8 recorded in CDCl<sub>3</sub>.



Mol. wt. = 858.3741

Obs. mol. wt. 858.3774



Figure S16. HR-MS spectrum of compound 9.





Figure S17. <sup>1</sup>H NMR spectrum of compound 9 recorded in CDCl<sub>3</sub>.



Figure S17. <sup>11</sup>B NMR spectrum of compound 9 recorded in CDCl<sub>3</sub>.



Figure S18. <sup>13</sup>C NMR spectrum of compound of 9 recorded in CDCl<sub>3</sub>.





Figure S19. ES-MS spectrum of compound 10.





Figure S20. <sup>1</sup>H NMR spectrum of compound 10 recorded in CDCl<sub>3</sub>.



Figure S20. <sup>11</sup>B NMR spectrum of compound 10 recorded in CDCl<sub>3</sub>.



Figure S21. <sup>13</sup>C NMR spectrum of compound of 10 recorded in CDCl<sub>3</sub>.



Mol. wt. = 886.4054 Obs. mol. wt. = 886.4056



Figure S22. HR-MS spectrum of compound 11.





Figure S23. <sup>1</sup>H NMR spectrum of compound 11 recorded in CDCl<sub>3</sub>.



Figure S23. <sup>11</sup>B NMR spectrum of compound 11 recorded in CDCl<sub>3</sub>.



Figure S24. <sup>13</sup>C NMR spectrum of compound of 11 recorded in CDCl<sub>3</sub>.



**Figure S25.** Q-bands absorption spectra of compounds of **5-7** recorded in CHCl<sub>3</sub>. The inset shows the corresponding Soret bands. The concentrations were used  $10^{-5}$  M and  $10^{-6}$  M for Q and Soret bands respectively.



**Figure S26.** Q-bands absorption spectra of compounds of **9-11** recorded in CHCl<sub>3</sub>. The inset shows the corresponding Soret bands. The concentrations were used  $10^{-5}$  M and  $10^{-6}$  M for Q and Soret bands respectively.



**Figure S27.** Emission spectra of compounds of 4-7 recorded in CHCl<sub>3</sub> by exciting at their corresponding absorption maxima.



Figure S28. Emission spectra of compounds of 9-11 recorded in CHCl<sub>3</sub> by exciting at their corresponding absorption maxima.



**Figure S29.** Cyclic voltammograms of compounds of **5-7** recorded in  $CH_2Cl_2$  containing 0.1 M TBAP as supporting electrolyte using scan rate of 50 mV/sec.



**Figure S30.** Cyclic voltammograms of compounds of **9-11** recorded in  $CH_2Cl_2$  containing 0.1 M TBAP as supporting electrolyte using scan rate of 50 mV/sec.

| Parameters                               | Sm-3,5-MePh            |
|------------------------------------------|------------------------|
| mol formula                              | C60 H51 B N4 O3        |
| fw                                       | 886.86                 |
| cryst sym                                | Triclinic              |
| Space group                              | P -1                   |
| <i>a</i> (Å)                             | 11.795(2)              |
| <i>b</i> (Å)                             | 14.191(3)              |
| <i>c</i> (Å)                             | 15.317(4)              |
| $\alpha$ (deg)                           | 91.144(14)             |
| $\beta$ (deg)                            | 107.536(13)            |
| $\gamma(\text{deg})$                     | 90.403(11)             |
| $V(\text{\AA}^3)$                        | 2444.1(9)              |
| $\mu \text{ (mm}^{-1})$                  | 0.074                  |
| $D_{\text{calcd}}$ (g cm <sup>-3</sup> ) | 1.205                  |
| F(000)                                   | 936                    |
| $2\theta$ range (deg)                    | 1.81 - 25.12           |
| Independent refections                   | 8535 [R(int) = 0.1388] |
| R1, wR2 $[I > 2\sigma(I)]$               | 0.0865, 0.1620         |

## Table S1: Crystallographic data for compound

| R1, wR2 (all data)                     | 0.2545, 0.2373 |
|----------------------------------------|----------------|
| GOF                                    | 0.937          |
| Largest diff. peak/hole, (e $Å^{-3}$ ) | 0.338, -0.384  |