Polyoxometalate-directed two 3D metal-organic frameworks with multinuclear silver-ptz cycle/belts as subunits[†]

Xiuli Wang,* Na Li, Aixiang Tian, Jun Ying, Guocheng Liu, Hongyan Lin, Yang Yang

Synthesis of [Ag₇(ptz)₄][PW₁₂O₄₀]·4H₂O (3)

Compound **3** was prepared in the same way as **2** except that $H_3PW_{12}O_{40}\cdot xH_2O$ (0.1 g, 0.035 mmol) was used instead of $H_3PMo_{12}O_{40}\cdot xH_2O$ and the pH value was adjusted to about 2.3. Dark red block crystals of **3** were obtained. Yield 50% based on W.

Fig. S1 The photograph of compounds 1–3 (left: compound 1, middle: compound 2, right: compound 3).

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry

Fig. S2 (a) The coordination environment of P_2W_{18} polyoxoanion. (b) The coordination modes of Ag^I ions and ptz ligands in compound 1. The crystal water and hydrogen atoms are omitted for clarity.

Fig. S3 The 3D framework of 1.

Fig. S4 The neighboring 1D belts connecting with each other to form a 2D network in **2** by the linkages of Ag3 atoms.

Fig. S5 The 3D framework of 2.

Fig. S6 The PXRD patterns of compounds 1 and 2.

Fig. S7 The IR spectra of compounds 1 and 2.

Fig. S8 The TG curves of compounds 1–3.

Fig. S9 The cyclic voltammograms of the 3–CPE in 0.1M $H_2SO_4 + 0.5M Na_2SO_4$ aqueous solution at different scan rates (from inner to outer: 40, 60, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450 and 500 mV·s⁻¹, respectively).

Fig. S10 The dependence of anodic peak (II) and cathodic peak (II') currents of 1– (a), 2– (b) and3–CPEs (c) on scan rates.

Fig. S11 Cyclic voltammograms of the 1– (a), 2– (b) and 3–CPEs (c) in 0.1M $H_2SO_4 + 0.5M$ Na_2SO_4 aqueous solution containing 0(b); 2(c); 4(d) and 6(e) mM $NaNO_2$ and a bare CPE in a 4.0 mM $NaNO_2 + 0.1M H_2SO_4 + 0.5M Na_2SO_4$ solution. Scan rate: 200 mV·s⁻¹.

Fig. S12 Cyclic voltammograms of the 1– (a) and 3–CPEs (b) in 0.1M $H_2SO_4 + 0.5M Na_2SO_4$ aqueous solution containing 0(b); 2(c); 4(d) and 6(e) mM H_2O_2 and a bare CPE in a 4.0 mM H_2O_2 + 0.1M $H_2SO_4 + 0.5M Na_2SO_4$ solution. Scan rate: 200 mV·s⁻¹.

Fig. S13 Cyclic voltammograms of the 1– (a) and 3–CPEs (b) in 0.1M $H_2SO_4 + 0.5M Na_2SO_4$ aqueous solution containing 0(b); 2(c); 4(d) and 6(e) mM KBrO₃ and a bare CPE in a 4.0 mM KBrO₃ + 0.1M $H_2SO_4 + 0.5M Na_2SO_4$ solution. Scan rate: 200 mV·s⁻¹.

Fig. S14 Absorption spectra of the MB solution during the decomposition reaction under UV irradiation with the presence of compound **3**.

Table S1. Selected bond distances (Å) and angles (°) for compounds 1 and 2.					
Compound 1					
Ag(1)-N(1)	2.181(15)	Ag(1)-N(6)	2.192(15)		
Ag(2)-N(19)#1	2.184(15)	Ag(2)-O(49)	2.289(12)		
Ag(2)-N(17)	2.292(15)	N(19)-Ag(2)#1	2.184(15)		
Ag(3)-N(3)	2.190(14)	Ag(3)-N(11)	2.176(15)		
N(14)-Ag(4)#6	2.190(14)	Ag(4)-N(14)#3	2.190(14)		
Ag(4)-N(16)	2.204(16)	Ag(4)-O(51)	2.542(12)		
N(2)-Ag(5)#2	2.128(16)	Ag(5)-N(2)#4	2.128(16)		
Ag(5)-N(5)	2.154(15)	Ag(6)-N(15)#5	2.155(15)		
Ag(6)-N(20)	2.174(17)	O(1W)-Ag(6)	2.520(15)		
N(15)-Ag(6)#5	2.155(15)	N(18)-Ag(7)#1	2.390(14)		
Ag(7)-N(13)	2.211(16)	Ag(7)-O(63)	2.33(2)		
Ag(7)-N(18)#1	2.390(14)	N(1)-Ag(1)-N(6)	168.3(6)		
C(24)-N(1)-Ag(1)	136.4(13)	N(16)-N(1)-Ag(1)	117.1(10)		
N(12)-N(6)-Ag(1)	117.2(12)	N(5)-N(6)-Ag(1)	126.0(12)		
N(16)-N(19)-Ag(2)#1	132.4(11)	N(18)-N(19)-Ag(2)#1	115.5(10)		
W(3)-O(49)-Ag(2)	139.0(6)	O(49)-Ag(2)-N(17)	98.7(5)		
N(13)-N(17)-Ag(2)	115.0(12)	N(14)-N(17)-Ag(2)	133.0(11)		

_				
	N(19)#1-Ag(2)-O(49)	134.0(5)	N(19)#1-Ag(2)-N(17)	127.1(5)
	N(11)-Ag(3)-N(3)	150.5(6)	N(20)-N(11)-Ag(3)	122.3(11)
	N(13)-N(3)-Ag(3)	114.9(10)	C(2)-N(3)-Ag(3)	140.4(13)
	C(15)-N(11)-Ag(3)	131.3(12)	N(16)-Ag(4)-O(51)	91.7(5)
	N(14)#3-Ag(4)-N(16)	158.7(6)	N(14)#3-Ag(4)-O(51)	109.3(5)
	C(2)-N(14)-Ag(4)#6	132.9(12)	N(17)-N(14)-Ag(4)#6	120.5(10)
	N(19)-N(16)-Ag(4)	121.8(11)	N(1)-N(16)-Ag(4)	129.5(12)
	W(17)-O(51)-Ag(4)	138.8(6)	C(15)-N(2)-Ag(5)#2	134.3(14)
	N(10)-N(2)-Ag(5)#2	117.3(11)	N(2)#4-Ag(5)-N(5)	169.8(6)
	N(6)-N(5)-Ag(5)	130.8(11)	N(15)-N(5)-Ag(5)	120.5(12)
	C(1)-N(15)-Ag(6)#5	131.7(11)	N(5)-N(15)-Ag(6)#5	123.1(11)
	N(10)-N(20)-Ag(6)	116.6(12)	N(11)-N(20)-Ag(6)	128.6(12)
	N(15)#5-Ag(6)-N(20)	170.6(6)	N(15)#5-Ag(6)-O(1W)	91.1(5)
	N(20)-Ag(6)-O(1W)	96.4(5)	N(13)-Ag(7)-O(63)	132.0(6)
	N(13)-Ag(7)-N(18)#1	121.1(5)	O(63)-Ag(7)-N(18)#1	101.7(6)
	N(17)-N(13)-Ag(7)	121.3(12)	N(3)-N(13)-Ag(7)	131.1(11)
	C(24)-N(18)-Ag(7)#1	128.8(12)	N(19)-N(18)-Ag(7)#1	116.4(10)

Symmetry codes for 1: #1 -x+2, -y+1, -z+2 #2 x-1, y, z+1 #3 x+1, y, z

#4 x+1, y, z-1 #5 -x+2, -y, -z+2

-2 #6 x-1, y, z

Compound 2

Ag(1)-N(10)#1	2.203(10)	Ag(1)-N(6)	2.227(11)
N(10)-Ag(1)#1	2.203(10)	Ag(1)-N(9)	2.294(9)
N(3)-Ag(2)#2	2.198(10)	Ag(2)-N(3)#2	2.198(11)
Ag(2)-N(1)	2.265(10)	Ag(2)-N(5)	2.245(10)
Ag(3)-N(2)#3	2.118(11)	N(2)-Ag(3)#4	2.118(11)
Ag(3)-N(7)	2.157(10)	N(10)#1-Ag(1)-N(6)	140.1(4)
N(1)-N(9)-Ag(1)	117.5(7)	N(10)#1-Ag(1)-N(9)	106.6(4)
N(9)-N(10)-Ag(1)#1	120.5(7)	N(6)-Ag(1)-N(9)	111.9(4)
N(2)-N(6)-Ag(1)	125.2(8)	N(10)-N(9)-Ag(1)	131.6(7)

N(5)-N(6)-Ag(1)	118.9(8)	C(5)-N(10)-Ag(1)#1	132.3(8)
N(5)-Ag(2)-N(1)	110.2(4)	N(3)#2-Ag(2)-N(5)	131.2(4)
N(6)-N(5)-Ag(2)	111.2(8)	C(5)-N(3)-Ag(2)#2	137.1(8)
N(9)-N(1)-Ag(2)	127.4(7)	N(3)#2-Ag(2)-N(1)	118.5(4)
N(3)-N(1)-Ag(2)	124.7(7)	N(1)-N(3)-Ag(2)#2	115.5(7)
C(6)-N(5)-Ag(2)	136.9(8)	N(6)-N(2)-Ag(3)#4	122.8(8)
N(2)#3-Ag(3)-N(7)	172.5(4)	C(7)-N(7)-Ag(3)	118.0(9)
N(4)-N(2)-Ag(3)#4	127.1(8)	C(10)-N(7)-Ag(3)	123.4(9)
Symmetry codes for 2 :	#1 -x+2, -y+2, -z	#2 -x+1, -y+2, -z #3 x, y, z-1	#4 x, y, z+1
#5 -x+	-2, -y+1, -z		