The photochemistry of rhenium(I) tricarbonyl N-heterocyclic carbene complexes

Jamila G. Vaughan,^{*a*} Brodie L. Reid,^{*a*} Sushil Ramchandani,^{*a*} Phillip J. Wright,^{*a*} Sara Muzzioli,^{*b*} Brian W. Skelton,^{*c*} Paolo Raiteri,^{*a*} David H. Brown,^{*a*,*} Stefano Stagni,^{*b*,*} Massimiliano Massi^{*a*,*}

^a Department of Chemistry – Curtin University, Kent Street, Bentley 6102 WA, Australia.

^b Department of Industrial Chemistry "Toso Montanari" – University of Bologna, viale del Risorgimento 4, Bologna 40126, Italy.

^c Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Crawley 6009 WA, Australia.

Electronic Supplementary Information

Table of Content

Bond Lengths and Angles Tables	S 2
Excitation and Emission Profiles	S11
Calculated Orbitals Contours	S14
Calculated Transitions	S22
¹ H-NMR Progressions for the Photochemical Studies	S35

Bond Lengths and Angles Tables

Re(1)-C(3)	1.9123(10)	
Re(1)-C(2)	1.9169(11)	
Re(1)-C(1)	1.9552(11)	
Re(1)-C(12)	2.1488(10)	
Re(1)-N(21)	2.2117(8)	
Re(1)-Cl(4)	2.4956(2)	
C(3)-Re(1)-C(2)	88.78(5)	
C(3)-Re(1)-C(1)	91.37(4)	
C(2)-Re(1)-C(1)	87.66(4)	
C(3)-Re(1)-C(12)	95.71(4)	
C(2)-Re(1)-C(12)	99.91(4)	
C(1)-Re(1)-C(12)	169.71(4)	
C(3)-Re(1)-N(21)	93.78(4)	
C(2)-Re(1)-N(21)	173.94(4)	
C(1)-Re(1)-N(21)	97.76(4)	
C(12)-Re(1)-N(21)	74.38(3)	
C(3)-Re(1)-Cl(4)	178.13(3)	
C(2)-Re(1)-Cl(4)	92.98(3)	
C(1)-Re(1)-Cl(4)	88.06(3)	
C(12)-Re(1)-Cl(4)	84.62(3)	
N(21)-Re(1)-Cl(4)	84.53(2)	

Table S1. Selected bond lengths and angles for $\mathbf{2Cl}$

Re(1)-C(3)	1.917(4)	
Re(1)-C(2)	1.923(4)	
Re(1)-C(1)	1.957(3)	
Re(1)-C(12)	2.145(3)	
Re(1)-N(21)	2.210(3)	
Re(1)-Br(4)	2.6255(4)	
C(3)-Re(1)-C(2)	89.42(15)	
C(3)-Re(1)-C(1)	92.06(14)	
C(2)-Re(1)-C(1)	87.94(14)	
C(3)-Re(1)-C(12)	96.25(13)	
C(2)-Re(1)-C(12)	100.14(13)	
C(1)-Re(1)-C(12)	168.43(14)	
C(3)-Re(1)-N(21)	93.24(13)	
C(2)-Re(1)-N(21)	174.42(12)	
C(1)-Re(1)-N(21)	96.86(12)	
C(12)-Re(1)-N(21)	74.70(12)	
C(3)-Re(1)-Br(4)	177.81(11)	
C(2)-Re(1)-Br(4)	92.66(11)	
C(1)-Re(1)-Br(4)	87.32(10)	
C(12)-Re(1)-Br(4)	84.07(9)	
N(21)-Re(1)-Br(4)	84.75(7)	

Table S2. Selected bond lengths and angles for 2Br

Re(1)-C(201)	1.908(4)	
Re(1)-C(101)	1.949(5)	
Re(1)-C(301)	1.977(6)	
Re(1)-C(2)	2.119(4)	
Re(1)-N(21)	2.277(3)	
Re(1)-Cl(1)	2.4799(13)	
C(201)-Re(1)-C(101)	85.75(18)	
C(201)-Re(1)-C(301)	91.65(19)	
C(101)-Re(1)-C(301)	88.6(2)	
C(201)-Re(1)-C(2)	95.88(17)	
C(101)-Re(1)-C(2)	177.60(18)	
C(301)-Re(1)-C(2)	89.60(19)	
C(201)-Re(1)-N(21)	168.61(17)	
C(101)-Re(1)-N(21)	104.68(15)	
C(301)-Re(1)-N(21)	93.14(16)	
C(2)-Re(1)-N(21)	73.84(14)	
C(201)-Re(1)-Cl(1)	92.14(16)	
C(101)-Re(1)-Cl(1)	93.60(14)	
C(301)-Re(1)-Cl(1)	175.74(13)	
C(2)-Re(1)-Cl(1)	88.09(13)	
N(21)-Re(1)-Cl(1)	82.78(10)	

Table S3. Selected bond lengths and angles for 3Cl

Table S4. Selected box	d lengths and	angles for 3Br
------------------------	---------------	----------------

Re(1)-C(201)	1.913(4)	
Re(1)-C(101)	1.955(4)	
Re(1)-C(301)	2.058(5)	
Re(1)-C(2)	2.114(4)	
Re(1)-N(21)	2.275(3)	
Re(1)-Br(1)	2.6243(5)	
C(201)-Re(1)-C(101)	85.28(15)	
C(201)-Re(1)-C(301)	92.03(18)	
C(101)-Re(1)-C(301)	88.77(17)	
C(201)-Re(1)-C(2)	95.91(14)	
C(101)-Re(1)-C(2)	178.61(15)	
C(301)-Re(1)-C(2)	90.46(17)	
C(201)-Re(1)-N(21)	168.85(14)	
C(101)-Re(1)-N(21)	104.79(13)	
C(301)-Re(1)-N(21)	92.97(13)	
C(2)-Re(1)-N(21)	74.10(11)	
C(201)-Re(1)-Br(1)	91.74(14)	
C(101)-Re(1)-Br(1)	94.00(12)	
C(301)-Re(1)-Br(1)	175.50(11)	
C(2)-Re(1)-Br(1)	86.70(12)	
N(21)-Re(1)-Br(1)	82.90(8)	

Table S5. Selected bond lengths and angles for *cis,cis*-[Re(CO)₂(PyImPh)(NCCH₃)Cl]

Re(1)-C(102)	1.886(3)
Re(1)-C(101)	1.888(5)
Re(1)-C(103)	1.937(14)
Re(1)-C(2)	2.062(2)
Re(1)-N(31)	2.119(2)
Re(1)-N(21)	2.215(2)
Re(1)-Cl(2)	2.416(4)
Re(1)-Cl(1)	2.4914(12)
C(102)-Re(1)-C(101)	84.83(15)
C(102)-Re(1)-C(103)	90.8(5)
C(102)-Re(1)-C(2)	98.38(9)
C(101)-Re(1)-C(2)	91.70(14)
C(103)-Re(1)-C(2)	90.5(4)
C(102)-Re(1)-N(31)	94.10(9)
C(101)-Re(1)-N(31)	90.06(14)
C(103)-Re(1)-N(31)	88.7(4)
C(2)-Re(1)-N(31)	167.50(9)
C(102)-Re(1)-N(21)	172.96(9)
C(101)-Re(1)-N(21)	93.89(14)
C(103)-Re(1)-N(21)	90.7(5)
C(2)-Re(1)-N(21)	74.71(8)
N(31)-Re(1)-N(21)	92.83(8)
C(102)-Re(1)-Cl(2)	91.26(13)
C(103)-Re(1)-Cl(2)	177.4(4)
C(2)-Re(1)-Cl(2)	90.87(11)
N(31)-Re(1)-Cl(2)	89.49(10)
N(21)-Re(1)-Cl(2)	87.52(12)
C(102)-Re(1)-Cl(1)	95.12(8)
C(101)-Re(1)-Cl(1)	177.13(13)
C(2)-Re(1)-Cl(1)	91.15(7)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

N(31)-Re(1)-Cl(1)	87.08(6)
N(21)-Re(1)-Cl(1)	86.51(6)

	U ¹¹	U ²²	U ³³	U ²³	U13	U12	
$\overline{\text{Re}(1)}$	22(1)	20(1)	15(1)	1(1)	8(1)	0(1)	
Cl(1)	21(1)	27(1)	23(1)	4(1)	8(1)	-2(1)	
C(103)	27(7)	34(7)	30(6)	4(5)	8(6)	-6(5)	
O(103)	27(6)	52(6)	48(6)	16(5)	13(5)	-6(5)	
C(101)	27(2)	19(2)	20(2)	1(1)	10(2)	-1(2)	
O(101)	25(1)	33(2)	31(1)	1(1)	7(1)	-10(1)	
Cl(2)	29(2)	40(2)	25(2)	4(1)	10(2)	-5(2)	
C(102)	29(1)	30(1)	17(1)	-2(1)	9(1)	-2(1)	
O(102)	53(1)	22(1)	35(1)	-1(1)	13(1)	4(1)	
N(1)	23(1)	21(1)	17(1)	2(1)	10(1)	0(1)	
C(11)	26(1)	24(1)	15(1)	1(1)	6(1)	3(1)	
C(12)	29(1)	37(1)	26(1)	6(1)	13(1)	8(1)	
C(13)	41(2)	51(2)	29(1)	5(1)	13(1)	22(1)	
C(14)	58(2)	30(1)	25(1)	1(1)	6(1)	17(1)	
C(15)	50(2)	23(1)	26(1)	1(1)	4(1)	0(1)	
C(16)	30(1)	26(1)	22(1)	3(1)	6(1)	-2(1)	
C(2)	20(1)	21(1)	17(1)	1(1)	7(1)	-1(1)	
N(21)	21(1)	20(1)	19(1)	2(1)	6(1)	-2(1)	
C(22)	21(1)	19(1)	21(1)	1(1)	6(1)	-2(1)	
C(23)	32(1)	19(1)	29(1)	-1(1)	11(1)	0(1)	
C(24)	33(1)	19(1)	36(1)	2(1)	8(1)	2(1)	
C(25)	34(1)	25(1)	30(1)	9(1)	7(1)	1(1)	
C(26)	30(1)	25(1)	21(1)	5(1)	6(1)	-1(1)	
N(3)	24(1)	19(1)	17(1)	1(1)	8(1)	-1(1)	
C(4)	27(1)	24(1)	19(1)	-4(1)	11(1)	-4(1)	
C(5)	26(1)	27(1)	17(1)	-1(1)	9(1)	-1(1)	
N(31)	26(1)	26(1)	20(1)	-1(1)	9(1)	-3(1)	
C(31)	32(1)	28(1)	21(1)	1(1)	10(1)	-5(1)	
$\dot{C(32)}$	42(2)	48(2)	19(1)	0(1)	11(1)	-9(1)	
N(41)	72(2)	54(2)	46(2)	10(1)	35(2)	25(2)	
C(41)	56(2)	21(1)	24(1)	3(1)	12(1)	4(1)	
· · ·	- ()			- ()	× /		

Table S6. Anisotropic displacement parameters $(Å^2x10^3)$ for *cis,cis*-[Re(CO)₂(**PyImPh**)(NCCH₃)Cl]; the anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

Re(1)-C(20)	1.890(4)
Re(1)-C(10)	1.899(4)
Re(1)-C(2)	2.117(4)
Re(1)-N(22)	2.236(3)
Re(1)-P(1)	2.3457(10)
Re(1)-Br(1)	2.6557(4)
C(20)-Re(1)-C(10)	87.45(16)
C(20)-Re(1)-C(2)	101.57(15)
C(10)-Re(1)-C(2)	94.62(15)
C(20)-Re(1)-N(22)	174.12(14)
C(10)-Re(1)-N(22)	96.94(14)
C(2)-Re(1)-N(22)	74.25(13)
C(20)-Re(1)-P(1)	87.15(12)
C(10)-Re(1)-P(1)	91.45(11)
C(2)-Re(1)-P(1)	169.56(10)
N(22)-Re(1)-P(1)	96.61(9)
C(20)-Re(1)-Br(1)	91.50(12)
C(10)-Re(1)-Br(1)	176.42(11)
C(2)-Re(1)-Br(1)	82.23(10)
N(22)-Re(1)-Br(1)	83.88(8)
P(1)-Re(1)-Br(1)	91.92(2)

Table S7. Selected bond lengths and angles for cis, cis-[Re(CO)₂(**PyImPh**)Br(P(OEt)₃)]

Re(1)-C(102)	1.907(6)
Re(1)-C(101)	1.927(6)
Re(1)-C(2)	2.140(5)
Re(1)-N(21)	2.209(5)
Re(1)-P(1)	2.2793(16)
Re(1)-Br(1)	2.6602(6)
C(102)-Re(1)-C(101)	88.2(2)
C(102)-Re(1)-C(2)	103.7(2)
C(101)-Re(1)-C(2)	167.3(2)
C(102)-Re(1)-N(21)	176.0(2)
C(101)-Re(1)-N(21)	94.3(2)
C(2)-Re(1)-N(21)	74.18(19)
C(102)-Re(1)-P(1)	91.89(18)
C(101)-Re(1)-P(1)	86.38(17)
C(2)-Re(1)-P(1)	88.61(15)
N(21)-Re(1)-P(1)	91.49(12)
C(102)-Re(1)-Br(1)	90.97(18)
C(101)-Re(1)-Br(1)	97.39(16)
C(2)-Re(1)-Br(1)	87.14(14)
N(21)-Re(1)-Br(1)	85.52(12)
P(1)- $Re(1)$ - $Br(1)$	175.34(4)

Table S8. Selected bond lengths and angles for *cis,trans*-[Re(CO)₂(**PyImPh**)Br(P(OEt)₃)]

Excitation and Emission Profiles

Figure S1. Absorption, excitation and emission profiles for all the complexes from a ca. 10^{-5} M solution in dichloromethane.

Figure S2. Excitation and emission profiles for **2Cl** at 77 K from a ca. 10^{-5} M solution in dichloromethane.

Figure S3. Excitation and emission profiles for 2Br at 77 K from a ca. 10^{-5} M solution in dichloromethane.

Figure S4. Excitation and emission profiles for 3Cl at 77 K from a ca. 10^{-5} M solution in dichloromethane.

Figure S5. Excitation and emission profiles for 3Br at 77 K from a ca. 10^{-5} M solution in dichloromethane.

Calculated Orbitals Contours

Figure S6. Selected occupied orbital contours of 2Cl.

Figure S7. Selected unoccupied orbital contours of 2Cl.

Figure S8. Selected occupied orbital contours of 2Br.

Figure S9. Selected unoccupied orbital contours of 2Br.

Figure S11. Selected unoccupied orbitals contours of 3Cl.

Figure S12. Selected occupied orbital contours of 3Br.

LUMO

LUMO+1

LUMO+2

LUMO+3

Figure S13. Selected unoccupied orbital contours of 3Br.

Calculated Transitions

Table S9. Calculated transitions for 2Cl

Wavelength	Intensity	Levels	Character
399.47 nm	0.0107	HOMO -> LUMO	96.5 %
376.08 nm	0.1112	HOMO-1 -> LUMO	95.0 %
354.04 nm	0.0021	HOMO-2 -> LUMO	96.4 %
327.41 nm	0.0309	HOMO -> LUMO+1	96.6 %
316.59 nm	0.0116	HOMO-1 -> LUMO+1	95.8 %
301.27 nm	0.0085	HOMO -> LUMO+2	83.5 %
293.46 nm	0.0007	HOMO-2 -> LUMO+1 HOMO-1 -> LUMO+2	73.7 % 12.8 %
292.70 nm	0.0063	HOMO-2 -> LUMO+1 HOMO-1 -> LUMO+2	19.8 % 48.7 %
290.22 nm	0.0512	HOMO-3 -> LUMO	91.6 %
281.10 nm	0.0204	HOMO-1 -> LUMO+2	10.6 %
273.68 nm	0.0147	HOMO-1 -> LUMO+2	13.8 %
270.05 nm	0.0061	HOMO -> LUMO+3	75.1 %

269.74 nm	0.0377	HOMO-6 -> LUMO	59.4 %
		HOMO-2 -> LUMO+2	11.2 %
267.92 nm	0.0047	HOMO-6 -> LUMO	13.8 %
		HOMO-2 -> LUMO+2	52.4 %
265.94 nm	0.2067	HOMO-4 -> LUMO	77.7 %
262.54 nm	0.0082	HOMO-1 -> LUMO+3	82.4 %
260.99 nm	0.0041	HOMO-6 -> LUMO	11.7 %
258.93 nm	0.0021	HOMO-5 -> LUMO	84.3 %
254.76 nm	0.0079	HOMO-7 -> LUMO	31.1 %
253.60 nm	0.0370	HOMO-3 -> LUMO+1	20.8 %

Table S10. Calculated transitions for 2Br

Wavelength	Intensity	Levels	Character
404.80 nm	0.0073	HOMO -> LUMO	97.1 %
384.74 nm	0.0774	HOMO-1 -> LUMO	96.1 %
353.09 nm	0.0050	HOMO-2 -> LUMO	96.6 %
331.18 nm	0.0212	HOMO -> LUMO+1	97.2 %
322.04 nm	0.0108	HOMO-1 -> LUMO+1	96.4 %
308.51 nm	0.0434	HOMO-3 -> LUMO	96.1 %
303.88 nm	0.0100	HOMO -> LUMO+2 HOMO -> LUMO+3 HOMO -> LUMO+5	72.4 % 6.9 % 12.9 %
296.23 nm	0.0106	HOMO-4 -> LUMO HOMO-1 -> LUMO+2 HOMO-1 -> LUMO+3 HOMO -> LUMO+5 HOMO -> LUMO+2 HOMO -> LUMO+4 HOMO -> LUMO+5	2.4 % 50.9 % 4.5 % 10.5 % 3.0 % 15.8 % 3.1 %
292.96 nm	0.0014	HOMO-2 -> LUMO+1 HOMO-2 -> LUMO+4	92.3 % 2.2 %

290.74 nm	0.0742	HOMO-4 -> LUMO	89.7 %
		HOMO-2 -> LUMO+1	2.1 %
		HOMO-1 -> LUMO+2	2.6 %
285.01 nm	0.0269	HOMO-2 -> LUMO+2	2.1 %
		HOMO-1 -> LUMO+2	11.4 %
		HOMO-1 -> LUMO+4	8.6 %
		HOMO-1 -> LUMO+5	6.3 %
		HOMO -> LUMO+3	3.3 %
		HOMO -> LUMO+4	45.2 %
		HOMO -> LUMO+5	10.1 %
278.51 nm	0.0126	HOMO-1 -> LUMO+2	14.3 %
		HOMO-1 -> LUMO+3	5.3 %
		HOMO-1 -> LUMO+4	55.4 %
		HOMO-1 -> LUMO+5	11.5 %
		HOMO -> LUMO+4	3.3 %
272.19 nm	0.0029	HOMO-5 -> LUMO	6.4 %
		HOMO -> LUMO+2	9.9 %
		HOMO -> LUMO+3	73.0 %
		HOMO -> LUMO+4	5.6 %
270.80 nm	0.1328	HOMO-7 -> LUMO	3.9 %
		HOMO-5 -> LUMO	53.1 %
		HOMO-3 -> LUMO+1	2.4 %
		HOMO-2 -> LUMO+2	15.8 %
		HOMO-2 -> LUMO+4	4.5 %
		HOMO -> LUMO+3	7.0 %
		HOMO -> LUMO+4	2.4 %

268.38 nm	0.1069	HOMO-5 -> LUMO	24.1 %
		HOMO-2 -> LUMO+1	2.6 %
		HOMO-2 -> LUMO+2	40.2 %
		HOMO-2 -> LUMO+4	19.5 %
265.43 nm	0.0361	HOMO-3 -> LUMO+1	72.6 %
		HOMO-2 -> LUMO+4	2.2 %
		HOMO-1 -> LUMO+3	15.7 %
		HOMO-1 -> LUMO+4	3.4 %
264.89 nm	0.0372	HOMO-3 -> LUMO+1	20.3 %
		HOMO-1 -> LUMO+2	4.5 %
		HOMO-1 -> LUMO+3	60.0 %
		HOMO-1 -> LUMO+4	7.4 %
262.87 nm	0.0048	HOMO -> LUMO+2	8.6 %
		HOMO -> LUMO+3	7.0 %
		HOMO -> LUMO+4	12.2 %
		HOMO -> LUMO+5	66.3 %
260.39 nm	0.0052	HOMO-6 -> LUMO	91.9 %
257.63 nm	0.0176	HOMO-7 -> LUMO	35.8 %
		HOMO-6 -> LUMO	2.2 %
		HOMO-5 -> LUMO	5.3 %
		HOMO-4 -> LUMO+1	3.6 %
		HOMO-2 -> LUMO+4	9.7 %
		HOMO-2 -> LUMO+5	4.2 %
		HOMO-1 -> LUMO+3	2.9 %
		HOMO-1 -> LUMO+4	6.0 %
		HOMO-1 -> LUMO+5	16.4 %

Table S11. Calculated transitions for 3Cl

Wavelength	Intensity	Levels	Character
440.48 nm	0.0021	HOMO -> LUMO	97.8 %
410.61 nm	0.0984	HOMO-1 -> LUMO	97.5 %
382.95 nm	0.0003	HOMO-2 -> LUMO	97.3 %
328.79 nm	0.0131	HOMO-3 -> LUMO	4.8 %
		HOMO -> LUMO+1 HOMO -> LUMO+2	81.0 % 7.6 %
323.64 nm	0.0434	HOMO-4 -> LUMO	6.6 %
		HOMO-3 -> LUMO	82.1 %
		HOMO-1 -> LUMO+1	5.3 %
		HOMO -> LUMO+1	2.7 %
314.94 nm	0.0277	HOMO-5 -> LUMO	2.3 %
		HOMO-3 -> LUMO	4.2 %
		HOMO-1 -> LUMO+1	81.0 %
		HOMO-1 -> LUMO+2	5.4 %
313.08 nm	0.1007	HOMO-5 -> LUMO	5.0 %
		HOMO-4 -> LUMO	83.9 %
		HOMO-3 -> LUMO	5.5 %
301.11 nm	0.0795	HOMO-7 -> LUMO	3.5 %
		HOMO-5 -> LUMO	38.4 %
		HOMO-4 -> LUMO	5.2 %

		HOMO-3 -> LUMO+1	2.5 %
		HOMO-2 -> LUMO+1	7.5 %
		HOMO-1 -> LUMO+2	2.3 %
		HOMO -> LUMO+1	5.4 %
		HOMO -> LUMO+2	24.1 %
		HOMO -> LUMO+3	2.7 %
298.08 nm	0.1358	HOMO-5 -> LUMO	28.3 %
		HOMO-3 -> LUMO+1	2.6 %
		HOMO-2 -> LUMO+1	33.3 %
		HOMO-2 -> LUMO+2	8.7 %
		HOMO -> LUMO+1	2.3 %
		HOMO -> LUMO+2	6.7 %
		HOMO -> LUMO+4	4.2 %
		HOMO -> LUMO+5	2.2 %
297.15 nm	0.0477	HOMO-5 -> LUMO	0.1 %
		HOMO-2 -> LUMO+1	36.4 %
		HOMO-2 -> LUMO+2	5.6 %
		HOMO -> LUMO+1	3.9 %
		HOMO -> LUMO+2	27.1 %
		HOMO -> LUMO+3	3.9 %
		HOMO -> LUMO+4	7.7 %
		HOMO -> LUMO+5	3.0 %
289.66 nm	0.0516	HOMO-5 -> LUMO	4.8 %
		HOMO-1 -> LUMO+1	7.0 %
		HOMO-1 -> LUMO+2	18.4 %
		HOMO-1 -> LUMO+3	3.1 %
		HOMO-1 -> LUMO+4	12.1 %
		HOMO-1 -> LUMO+5	6.1 %

		HOMO \rightarrow LUMO+2	7.6 %
		HOMO -> LUMO+4	19.8 %
		HOMO -> LUMO+5	13.0 %
		HOMO -> LUMO+6	2.5 %
282.62 nm	0.0247	HOMO-1 -> LUMO+2	25.8 %
		HOMO-1 -> LUMO+3	2.5 %
		HOMO-1 -> LUMO+4	8.7 %
		HOMO-1 -> LUMO+5	3.2 %
		HOMO -> LUMO+2	10.2 %
		HOMO -> LUMO+4	24.8 %
		HOMO -> LUMO+5	10.6 %
281.97 nm	0.0078	HOMO-8 -> LUMO	78.7 %
		HOMO-6 -> LUMO	14.3 %
278.23 nm	0.0298	HOMO-7 -> LUMO	9.8 %
		HOMO-5 -> LUMO	3.9 %
		HOMO-1 -> LUMO+2	24.3 %
		HOMO-1 -> LUMO+4	31.3 %
		HOMO-1 -> LUMO+5	19.8 %
		HOMO-1 -> LUMO+6	5.6 %
277.18 nm	0.0031	HOMO-8 -> LUMO	12.0 %
		HOMO-7 -> LUMO	4.9 %
		HOMO-6 -> LUMO	79.3 %
274.89 nm	0.0446	HOMO-8 -> LUMO	3.0 %
		HOMO-7 -> LUMO	55.7 %
		HOMO-6 -> LUMO	3.4 %
		HOMO-5 -> LUMO	6.8 %

		HOMO-3 -> LUMO+1	9.4 %
		HOMO-1 -> LUMO+2	6.4 %
		HOMO-1 -> LUMO+4	3.4 %
		HOMO-1 -> LUMO+5	2.4 %
271.52 nm	0.0166	HOMO -> LUMO+2	7.8 %
		HOMO -> LUMO+3	83.9 %
		HOMO -> LUMO+4	2.6 %
269.30 nm	0.0144	HOMO-2 -> LUMO+1	18.5 %
		HOMO-2 -> LUMO+2	64.7 %
		HOMO-2 -> LUMO+3	6.2 %
262.55 nm	0.0110	HOMO-1 -> LUMO+2	5.8 %
		HOMO-1 -> LUMO+3	84.2 %
260.78 nm	0.0076	HOMO-9 -> LUMO	11.0 %
		HOMO-3 -> LUMO+1	6.9 %
		HOMO-2 -> LUMO+4	6.6 %
		HOMO-2 -> LUMO+5	3.7 %
		HOMO-1 -> LUMO+3	2.4 %
		HOMO -> LUMO+4	24.2 %
		HOMO -> LUMO+5	37.1 %
		HOMO -> LUMO+5	37.1 %

Table S12. Calculated transitions for 3Br

Wavelength	Intensity	Levels	Character
445.85 nm	0.0012	HOMO -> LUMO	98.0 %
420.40 nm	0.0758	HOMO-1 -> LUMO	97.8 %
382.29 nm	0.0002	HOMO-2 -> LUMO	97.3 %
340.23 nm	0.0258	HOMO-4 -> LUMO HOMO-3 -> LUMO	4.5 % 93.4 %
332.70 nm	0.0065	HOMO-4 -> LUMO HOMO -> LUMO+1 HOMO -> LUMO+2	7.7 % 78.8 % 7.6 %
324.35 nm	0.0950	HOMO-4 -> LUMO HOMO-3 -> LUMO HOMO-1 -> LUMO+1 HOMO -> LUMO+1	79.7 % 3.3 % 5.6 % 6.3 %
320.36 nm	0.0281	HOMO-5 -> LUMO HOMO-4 -> LUMO HOMO-1 -> LUMO+1 HOMO-1 -> LUMO+2	2.6 % 3.3 % 82.9 % 4.9 %
303.78 nm	0.0916	HOMO-8 -> LUMO HOMO-6 -> LUMO HOMO-5 -> LUMO HOMO-4 -> LUMO+1	2.8 % 3.6 % 48.2 % 2.4 %

		HOMO-1 -> LUMO+2	2.4 %
		HOMO -> LUMO+1	4.0 %
		HOMO -> LUMO+2	24.6 %
		HOMO -> LUMO+3	2.3 %
301.32 nm	0.0648	HOMO-6 -> LUMO	22.0 %
		HOMO-5 -> LUMO	17.0 %
		HOMO-2 -> LUMO+1	2.7 %
		HOMO -> LUMO+1	6.1 %
		HOMO -> LUMO+2	31.1 %
		HOMO -> LUMO+3	4.3 %
		HOMO -> LUMO+4	4.8 %
		HOMO -> LUMO+5	2.5 %
298.90 nm	0.1038	HOMO-8 -> LUMO	2.0 %
		HOMO-6 -> LUMO	49.9 %
		HOMO-5 -> LUMO	7.7 %
		HOMO-2 -> LUMO+1	9.9 %
		HOMO-1 -> LUMO+2	4.4 %
		HOMO -> LUMO+2	6.1 %
		HOMO -> LUMO+3	2.1 %
		HOMO -> LUMO+4	3.8 %
		HOMO -> LUMO+5	2.1 %
297.86 nm	0.0163	HOMO-6 -> LUMO	12.5 %
		HOMO-2 -> LUMO+1	62.5 %
		HOMO-2 -> LUMO+2	14.1 %
292.75 nm	0.0471	HOMO-6 -> LUMO	3.0 %
		HOMO-5 -> LUMO	4.5 %
		HOMO-1 -> LUMO+1	6.4 %

		HOMO-1 -> LUMO+2	24.9 %
		HOMO-1 -> LUMO+3	5.3 %
		HOMO-1 -> LUMO+4	10.8 %
		HOMO-1 -> LUMO+5	6.1 %
		HOMO -> LUMO+2	6.3 %
		HOMO -> LUMO+4	13.6 %
		HOMO -> LUMO+5	10.0 %
285.79 nm	0.0245	HOMO-1 -> LUMO+2	29.7 %
		HOMO-1 -> LUMO+3	2.1 %
		HOMO-1 -> LUMO+4	2.2 %
		HOMO -> LUMO+2	10.1 %
		HOMO -> LUMO+3	6.7 %
		HOMO -> LUMO+4	25.1 %
		HOMO -> LUMO+5	12.7 %
281.71 nm	0.0147	HOMO-1 -> LUMO+2	22.6 %
		HOMO-1 -> LUMO+3	4.9 %
		HOMO-1 -> LUMO+4	34.6 %
		HOMO-1 -> LUMO+5	23.4 %
		HOMO-1 -> LUMO+6	5.5 %
278.84 nm	0.0134	HOMO-9 -> LUMO	5.3 %
		HOMO-8 -> LUMO	23.4 %
		HOMO-7 -> LUMO	59.1 %
		HOMO-6 -> LUMO	4.1 %
276.03 nm	0.0441	HOMO-8 -> LUMO	47.4 %
		HOMO-7 -> LUMO	32.8 %
		HOMO-5 -> LUMO	7.2 %
		HOMO-4 -> LUMO+1	2.6 %

		HOMO-3 -> LUMO+1	4.3 %
272.94 nm	0.0066	HOMO -> LUMO+2 HOMO -> LUMO+3 HOMO -> LUMO+4	3.4 % 77.8 % 12.5 %
270.26 nm	0.0412	HOMO-9 -> LUMO HOMO-8 -> LUMO HOMO-3 -> LUMO+1 HOMO-2 -> LUMO+1 HOMO-2 -> LUMO+2 HOMO-2 -> LUMO+3	2.1 % 3.4 % 6.3 % 18.0 % 59.1 % 3.7 %
269.25 nm	0.0511	HOMO-9 -> LUMO HOMO-7 -> LUMO HOMO-4 -> LUMO+1 HOMO-3 -> LUMO+1	76.7 % 2.2 % 7.7 % 3.2 %
267.70 nm	0.0471	HOMO-8 -> LUMO HOMO-4 -> LUMO+1 HOMO-3 -> LUMO+1 HOMO-2 -> LUMO+2 HOMO-2 -> LUMO+2	5.4 % 4.2 % 73.9 % 7.9 %

¹H-NMR Progressions for the Photochemical Studies

Figure S14. Photolysis of 2Cl in a deuterated acetone solution.

Figure S15. Photolysis of 2Cl in a deuterated acetonitrile solution.

Figure S16. Photochemical and thermal steps of **2Cl** in a deuterated acetonitrile solution. The thermal steps were performed in darkness.

Figure S17. Photolysis of 2Cl in a deuterated chloroform solution.

Figure S18. Photolysis of 2Br in a deuterated acetone solution.

Figure S19. Photolysis of 2Br in a deuterated acetonitrile solution.

Figure S20. Photochemical and thermal steps of **2Br** in a deuterated acetonitrile solution. The thermal steps were performed in darkness.

Figure S21. Photolysis of 2Br in a deuterated chloroform solution.

Figure S22. Photolysis of *fac*-[Re(CO)₃(**PyImPh**)(NCCD₃)]BF₄ in a deuterated acetonitrile solution.

Figure S23. Photolysis of 3Cl in a deuterated acetone solution.

Figure S24. Photolysis of 3Cl in a deuterated acetonitrile solution.

Figure S25. Photolysis of 3Cl in a deuterated chloroform solution.

Figure S26. Photolysis of **3Br** in a deuterated acetone solution.

Figure S27. Photolysis of **3Br** in a deuterated acetonitrile solution.

Figure S28. Photolysis of 3Br in a deuterated chloroform solution.

Figure S29. Photolysis of *fac*-[Re(CO)₃(phen)Br] in a deuterated acetonitrile solution.