Binding of CO, and NH₃, at a five-coordinate Ru(II) centre in the solid state and in solution

Erin S. F. Ma, Dona C. Mudalige and Brian R. James*

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z. E-mail: <u>brj@chem.ubc.ca</u>

SUPPLEMENTARY MATERIAL

Fig. S1. Variable temperature ¹ H NMR spectra (CDCl ₃) of 1a under 1 atm CO; * = NMe ₂ of 2a , \blacklozenge = NMe of <i>cis,cis</i> - 3 , x = NMe ₂ of <i>trans,cis</i> - 3 .	Page 2
Fig. S2. IR spectra (CHCl ₃ , 0.1 mm KBr cell) of 1a under Ar (A), and 1a under 1 atm CO at different temperatures: ~ -50 °C (B), between ~ -50 and 20 °C (C–E), and 20 °C (F).	Page 3
Fig. S3. ³¹ P{ ¹ H} NMR spectrum of <i>trans</i> -RuCl ₂ (P–N)(PPh ₃)(NH ₃) (<i>trans</i> -4a), 5 min after dissolution in CDCl ₃ at 20 °C; see Experimental section for assignments.	Page 4
Fig. S4. ¹ H NMR spectrum (in the δ 4.0 to 0.0 region) of <i>trans</i> -RuCl ₂ (P–N)(PPh ₃)(NH ₃) (<i>trans</i> -4a), 5 min after dissolution in CDCl ₃ at 20 °C; see Experimental section for assignments.	Page 4
Fig. S5. ³¹ P{ ¹ H} NMR spectra (d_6 -acetone at 20 °C) of: (A) [RuCl(P–N)(PPh ₃)(NH ₃) ₂][PF ₆] (6) – the septet of PF ₆ ⁻ is at δ -143.4; and (B) 5a , [RuCl(P–N)(PPh ₃)(NH ₃) ₂ ···Cl], or RuCl ₂ (P–N)(PPh ₃)(NH ₃) ₂ with monodentate P–N (see text).	Page 5
Fig. S6. ¹ H NMR spectrum of [RuCl(P-N)(PPh ₃)(NH ₃) ₂]PF ₆ (6) in d_6 -acetone at 20 °C; • = acetone (δ 2.0); • = Et ₂ O (δ 3.4, 1.2) from isolation of 6; * = unidentified.	Page 5
Fig. S7. ³¹ P{ ¹ H} NMR spectrum for <i>in situ</i> formation (d_6 -acetone, 20 °C) of [Ru(P–N)(PPh ₃)(NH ₃) ₃](PF ₆) ₂ (8) from reaction of 1a and 2 equiv. NH ₄ PF ₆ with 1 atm NH ₃ in d_6 -actone at 20 °C – the septet of PF ₆ ⁻ is at δ -143.4.	Page 6

Fig. S1. Variable temperature ¹H NMR spectra (CDCl₃) of **1a** under 1 atm CO; $* = NMe_2$ of **2a**, $\blacklozenge = NMe$ of *cis,cis-***3**, $\mathbf{x} = NMe_2$ of *tran,cis-***3**.

Fig. S2. IR spectra (CHCl₃, 0.1 mm KBr cell) of **1a** under Ar (A), and **1a** under 1 atm CO at different temperatures: ~ -50 °C (B), between \sim C50 and 20 °C (C–E), and 50 °C (F).

Fig. S3. ³¹P{¹H} NMR spectrum of *trans*-RuCl₂(P–N)(PPh₃)(NH₃) (*trans*-4a), 5 min after dissolution in CDCl₃ at 20 °C; see Experimental section for assignments.

Fig. S4. ¹H NMR spectrum (in the δ 4.0 to 0.0 region) of *trans*-RuCl₂(P–N)(PPh₃)(NH₃) (*trans*-4a), 5 min after dissolution in CDCl₃ at 20 °C; see Experimental section for assignments.

Fig. S5. ³¹P{¹H} NMR spectra (d_6 -acetone at 20 °C) of: (A) [RuCl(P–N)(PPh₃)(NH₃)₂][PF₆] (**6**) – the septet of PF₆⁻ is at δ -143.4; and (B) **5a**, [RuCl(P–N)(PPh₃)(NH₃)₂···Cl], or RuCl₂(P–N)(PPh₃)(NH₃)₂ with monodentate P–N (see text).

Fig. S6. ¹H NMR spectrum of [RuCl(P-N)(PPh₃)(NH₃)₂]PF₆ (6) in d_6 -acetone at 20 °C; • = acetone (δ 2.0); • = Et₂O (δ 3.4, 1.2) from isolation of 6; * = unidentified.

Fig. S7. ³¹P{¹H} NMR spectrum for *in situ* formation (*d*₆-acetone, 20 °C) of $[\text{Ru}(\text{P}-\text{N})(\text{PPh}_3)(\text{NH}_3)_3](\text{PF}_6)_2$ (**8**) from reaction of **1a** and 2 equiv. NH₄PF₆ with 1 atm NH₃ in d₆-actone at 20 °C – the septet of PF₆⁻ is at δ -143.4.