Electronic Supporting Information (ESI)

Magnetocaloric Effect and Slow Magnetic Relaxation in Two Only Azido Bridged Ferromagnetic Tetranuclear Metal Clusters

Jiong-Peng Zhao,^{a,b} Ran Zhao,^b Qian Yang,^b Bo-Wen Hu,^b Fu-Chen Liu*^a and Xian-He Bu*^b

Figure S1. EDX of complex 1.

(a)

(b)

Figure S2 The XRPD diagrams for 1 (a) and 2 (b).

Figure S3. a) χ_m vs. *T* plots for complexes 1 and 2.

Figure S4. Temperature dependence of $\chi_m T$ and $1/\chi_m$ plots for **2**. The solid line is the best fit to the Curie-Weiss law.

Figure S5. Magnetization versus field of 1 and 2 at 2 K. The solid lines are the Brillouin functions with different S and g: one magnetically isolated spin S = 6, g = 2 (—); one magnetically isolated spin S = 2, g = 4.3 (—); one magnetically isolated spin S = 10, g = 2.05 (—) and four magnetically isolated spin S = 5/2, g = 2.05 (—).

Figure S6. Temperature dependence of the in-phase and out-of-phase ac susceptibilities at the indicated frequencies in zero, 0.1 T and 0.5 T applied static fields for **2**.

Figure S7. a) and b): χ_m' and $\chi_m'' vs. v$ plots at 3 K under various applied fields for 2. The red solid line represents the least-squares fitting of the data for applied fields 500-2500 Oe.

Figure S8. Hysteresis loop for complex 2 at 2 K.