## ELECTRONIC SUPPORTING INFORMATION (ESI) FOR

# Palladium(II)-(E,N,E) pincer ligand (E = S/Se/Te) complex catalyzed Suzuki coupling reactions in water via in situ generated palladium quantum dots

Satyendra Kumar, Gyandshwar K. Rao, Arun Kumar, Mahabir P. Singh and Ajai Kumar Singh\*

### Contents

| S1.                 | Immobilisation of 4-Bromobenzoic Acid on Silica                  | 1-2  |
|---------------------|------------------------------------------------------------------|------|
| Figure S1.          | NMR % Conversion with Time for Complex 1 and NPs                 |      |
|                     | Obtained from Complex 1                                          | 2    |
| Table S1.           | Crystal Data and Structural Refinement Parameters of $2$ and $3$ | 3    |
| Table S2.           | Selected Bond Lengths and Bond Angles of Complex 2               | 4    |
| Table S3.           | Selected Bond Lengths and Bond Angles of Complex 3               | 5    |
| Figures. S2 and S3. | Intermolecular interactions in complex 2 and 3                   | 6    |
| Figures. S4.        | HRTEM images of NPs obtained from complexes 1–3                  | 7    |
| Figures. S5–S33.    | Scan Files                                                       | 7–23 |

#### S1. Immobilisation of 4-Bromobenzoic Acid on Silica<sup>1</sup>

4-Bromobenzoic acid (1.99 g, 10 mmol) was refluxed with dry  $SOCl_2$  (20 mL) for 3 h. After that the solution was cooled and thionyl chloride was distilled off to give 4-bromobenzoyl chloride as a white solid. 3-Aminopropyl trimethoxysilane-modified silica (1.00 g, Aldrich), pyridine



Scheme S1. Immobilisation of 4-Bromobenzoic Acid on Silica

(0.404 mL), dry THF (10 mL) and 4-bromobenzoyl chloride (1.150 g, 5.25 mmol) were stirred at 40 °C for 12 h in a round bottom flask under a N<sub>2</sub> atmosphere. The suspension was filtered through G-4 crucible and washed with 5% (v/v) HCl ( $3 \times 20$  mL) followed by 0.02 M aqueous K<sub>2</sub>CO<sub>3</sub> ( $2 \times 20$  mL) and rinsed with distilled water (40 mL) and ethanol (40 mL). The resulting solid was washed with excess dichloromethane and dried at room temperature in air, resulting in white powder.



Figure S1. NMR % conversion with time for Suzuki coupling of 4-bromobenzoic acid in presence of complex 1 and nanoparticles obtained from complex 1

#### Reference

(1) J.D. Webb, S. MacQuarrie, K. McEleney, C.M. Crudden, J. Catal. 2007, 252, 97.

|                                              | Complex 2                                       | Complex 3                                                                               |  |  |
|----------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| Empirical formula                            | C16H19CINPdSe2CIH2O                             | C <sub>18</sub> H <sub>23</sub> Cl NO <sub>2</sub> PdTe <sub>2</sub> ClH <sub>2</sub> O |  |  |
| Formula weight                               | 578.56                                          | 735.89                                                                                  |  |  |
| Colour                                       | Orange                                          | Orange                                                                                  |  |  |
| Crystal size, mm <sup>3</sup>                | $0.34 \times 0.25 \times 0.23$                  | $0.35 \times 0.26 \times 0.24$                                                          |  |  |
| Crystal system                               | Monoclinic                                      | Monoclinic                                                                              |  |  |
| Space group                                  | P 21                                            | P 21/n                                                                                  |  |  |
| Unit Cell dimension                          | a = 5.7585(9)  Å                                | a = 18.500(2) Å                                                                         |  |  |
|                                              | b = 10.0664(16) Å                               | b = 10.3779(14) Å                                                                       |  |  |
|                                              | c = 16.847(3) Å                                 | c = 37.183(5)  Å                                                                        |  |  |
|                                              | $\alpha = 90^{\circ}$                           | lpha = 90 °                                                                             |  |  |
|                                              | $\beta = 96.071(2)^{\circ}$                     | $\beta = 98.127(3)^{\circ}$                                                             |  |  |
|                                              | $\gamma = 90$ °                                 | $\gamma = 90$ °                                                                         |  |  |
| Volume [Å <sup>3</sup> ]                     | 971.1(3)                                        | 7067.1(15)                                                                              |  |  |
| Z                                            | 2                                               | 12                                                                                      |  |  |
| $\rho$ , (calc.) Mg/m <sup>3</sup>           | 1.979                                           | 2.075                                                                                   |  |  |
| $\mu$ , mm <sup>-1</sup>                     | 4.981                                           | 3.460                                                                                   |  |  |
| F(000)                                       | 560                                             | 4176                                                                                    |  |  |
| <i>θ</i> , range (°)                         | 2.36 to 28.28                                   | 2.80 to 24.99                                                                           |  |  |
| Index ranges                                 | $-6 \le h \le 6$                                | $-22 \le h \le 22$                                                                      |  |  |
|                                              | $-11 \le k \le 11$                              | $-12 \le k \le 12$                                                                      |  |  |
|                                              | $-20 \le l \le 20$                              | $-44 \le l \le 44$                                                                      |  |  |
| Reflections collected/unique                 | 8789 / 3399 [ <i>R</i> <sub>int</sub> = 0.0370] | 66570 / 12446 [ <i>R<sub>int</sub></i> = 0.1027]                                        |  |  |
| Completeness to max. $\theta$ , %            | 99.8                                            | 100.0                                                                                   |  |  |
| Max./min. Transmission                       | 0.260 / 0.291                                   | 0.336 / 0.439                                                                           |  |  |
| Data/restraints/ parameters                  | 3374 / 4 / 220                                  | 12446 / 9 / 769                                                                         |  |  |
| Goodness–of–fit on $F^2$                     | 0.871                                           | 1.339                                                                                   |  |  |
| Final R indices                              | $R_1 = 0.0206,$                                 | $R_1 = 0.1153,$                                                                         |  |  |
| $[I > 2\sigma(I)]$                           | $wR_2 = 0.0465$                                 | $wR_2 = 0.1889$                                                                         |  |  |
| R indices (all data)                         | $R_1 = 0.0216,$                                 | $R_1 = 0.1492,$                                                                         |  |  |
|                                              | $wR_2 = 0.0468$                                 | $wR_2 = 0.2014$                                                                         |  |  |
| Largest diff. peak/hole [e.Å <sup>-3</sup> ] | 0.561/-0.383                                    | 1.446 /-1.788                                                                           |  |  |
| CCDC No.                                     | 945010                                          | 945011                                                                                  |  |  |

## Table S1. Crystal Data and Structural Refinement Parameters of 2 and 3

| Bond Distance (Å) |           | Bond Angle (°)           |           |  |  |  |  |
|-------------------|-----------|--------------------------|-----------|--|--|--|--|
| Se(1)-C(6)        | 1.946(4)  | C(6)— $Se(1)$ — $C(7)$   | 100.2(2)  |  |  |  |  |
| Se(1)-C(7)        | 1.962(4)  | C(6)— $Se(1)$ — $Pd(1)$  | 101.3(1)  |  |  |  |  |
| Se(1)— $Pd(1)$    | 2.4104(5) | C(7)— $Se(1)$ — $Pd(1)$  | 93.3(1)   |  |  |  |  |
| Pd(1) - N(1)      | 2.046(3)  | N(1) - Pd(1) - Cl(1)     | 178.8(1)  |  |  |  |  |
| Pd(1)— $Cl(1)$    | 2.297(1)  | N(1) - Pd(1) - Se(1)     | 87.8(1)   |  |  |  |  |
| Pd(1)—Se(2)       | 2.422(6)  | Cl(1)— $Pd(1)$ — $Se(1)$ | 92.36(3)  |  |  |  |  |
| Se(2)-C(11)       | 1.934(4)  | N(1) - Pd(1) - Se(2)     | 87.3(1)   |  |  |  |  |
| Se(2) - C(10)     | 1.970(4)  | Cl(1)— $Pd(1)$ — $Se(2)$ | 92.42(3)  |  |  |  |  |
| C(6) - C(5)       | 1.374(5)  | Se(1)— $Pd(1)$ — $Se(2)$ | 174.04(2) |  |  |  |  |
| C(6)-C(1)         | 1.388(5)  | C(11)— $Se(2)$ — $C(10)$ | 97.7(2)   |  |  |  |  |
| C(11)—C(16)       | 1.380(5)  | C(11)—Se(2)—Pd(1)        | 105.4(1)  |  |  |  |  |
| C(11)-C(12)       | 1.383(5)  | C(10)—Se(2)—Pd(1)        | 93.8(1)   |  |  |  |  |
| N(1)—C(8)         | 1.477(5)  | C(5)-C(6)-C(1)           | 121.4(4)  |  |  |  |  |
| N(1)—C(9)         | 1.490(5)  | C(5)-C(6)-Se(1)          | 121.4(3)  |  |  |  |  |
| C(1)-C(2)         | 1.390(5)  | C(1)-C(6)-Se(1)          | 117.1(3)  |  |  |  |  |
| C(16)—C(15)       | 1.391(6)  | C(16)-C(11)-C(12)        | 120.9(3)  |  |  |  |  |
| C(8) - C(7)       | 1.516(6)  | C(16)-C(11)-Se(2)        | 117.4(3)  |  |  |  |  |
| C(5)-C(4)         | 1.397(6)  | C(12)-C(11)-Se(2)        | 121.5(3)  |  |  |  |  |
| C(10)—C(9)        | 1.506(7)  | C(8) - N(1) - C(9)       | 112.7(3)  |  |  |  |  |
| C(4) - C(3)       | 1.374(5)  | C(8) - N(1) - Pd(1)      | 113.9(2)  |  |  |  |  |
| C(12)-C(13)       | 1.381(6)  | C(9) - N(1) - Pd(1)      | 112.3(3)  |  |  |  |  |
| C(2)—C (3)        | 1.377(6)  | C(6)-C(1)-C(2)           | 118.8(4)  |  |  |  |  |
| C(14)-C(15)       | 1.373(6)  | C(11)-C(16)-C(15)        | 119.2(4)  |  |  |  |  |
| C(14)-C(13)       | 1.387(6)  | N(1)-C(8)-C(7)           | 110.0(3)  |  |  |  |  |
|                   |           | C(6) - C(5) - C(4)       | 118.9(4)  |  |  |  |  |
|                   |           | C(9)-C(10)-Se(2)         | 111.0(3)  |  |  |  |  |
|                   |           | C(3) - C(4) - C(5)       | 120.3(4)  |  |  |  |  |
|                   |           | C(13)-C(12)-C(11)        | 119.3(4)  |  |  |  |  |
|                   |           | C(3)-C(2)-C(1)           | 120.3(4)  |  |  |  |  |
|                   |           | C(15)-C(14)-C(13)        | 120.2(4)  |  |  |  |  |
|                   |           | C(8) - C(7) - Se(1)      | 109.6(3)  |  |  |  |  |
|                   |           | C(12)-C(13)-C(14)        | 120.1(4)  |  |  |  |  |
|                   |           | C(14)-C(15)-C(16)        | 120.3(4)  |  |  |  |  |
|                   |           | C(4) - C(3) - C(2)       | 120.3(4)  |  |  |  |  |
|                   |           | N(1)-C(9)-C(10)          | 110.5(3)  |  |  |  |  |
|                   |           | H(1B) - O(1) - H(1C)     | 106.0(2)  |  |  |  |  |

## Table S2. Selected Bond Lengths and Bond Angles of Complex 2

| Bond Distance (Å) |            | Bond Angle (°)           |           |  |  |  |  |
|-------------------|------------|--------------------------|-----------|--|--|--|--|
| Pd(2)—N(2D)       | 2.070(13)  | N(2D) - Pd(2) - Cl(2)    | 178.8(4)  |  |  |  |  |
| Pd(2)— $Cl(2)$    | 2.288(4)   | N(2D) - Pd(2) - Te(3)    | 89.6(4)   |  |  |  |  |
| Pd(2)— $Te(3)$    | 2.5592(18) | Cl(2)— $Pd(2)$ — $Te(3)$ | 90.00(13) |  |  |  |  |
| Pd(2)— $Te(4)$    | 2.5878(18) | N(2D) - Pd(2) - Te(4)    | 87.4(4)   |  |  |  |  |
| Te(4)-C(30)       | 2.127(16)  | Cl(2)— $Pd(2)$ — $Te(4)$ | 92.96(13) |  |  |  |  |
| Te(4) - C(29)     | 2.16(2)    | Te(3) - Pd(2) - Te(4)    | 176.35(6) |  |  |  |  |
| Te(3)-C(23)       | 2.131(14)  | C(30)— $Te(4)$ — $C(29)$ | 96.9(7)   |  |  |  |  |
| Te(3)-C(26)       | 2.161(16)  | C(30)— $Te(4)$ — $Pd(2)$ | 96.8(5)   |  |  |  |  |
| N(2D)—C(28)       | 1.47(2)    | C(29)— $Te(4)$ — $Pd(2)$ | 89.5(5)   |  |  |  |  |
| N(2D)—C(27)       | 1.48(2)    | C(23)— $Te(3)$ — $C(26)$ | 95.6(6)   |  |  |  |  |
| N(2D)—H(2D)       | 0.84(16)   | C(23)— $Te(3)$ — $Pd(2)$ | 96.6(4)   |  |  |  |  |
| C(26)—C(27)       | 1.47(2)    | C(26)— $Te(3)$ — $Pd(2)$ | 88.4(5)   |  |  |  |  |
| C(29)—C(28)       | 1.49(2)    | C(28)— $N(2D)$ — $C(27)$ | 109.6(13) |  |  |  |  |
| C(23)—C(24)       | 1.36(2)    | C(28)— $N(2D)$ — $Pd(2)$ | 115.5(10) |  |  |  |  |
| C(23)—C(22)       | 1.39(2)    | C(27)— $N(2D)$ — $Pd(2)$ | 115.1(11) |  |  |  |  |
| C(20)—C(21)       | 1.37(2)    | C(27)-C(26)-Te(3)        | 110.2(11) |  |  |  |  |
| C(20)—C(25)       | 1.37(2)    | C(26)-C(27)-N(2D)        | 115.3(14) |  |  |  |  |
| C(20)—O(3)        | 1.375(19)  | C(28)-C(29)-Te(4)        | 110.6(13) |  |  |  |  |
| C(24)—C(25)       | 1.39(2)    | C(24) - C(23) - C(22)    | 116.6(14) |  |  |  |  |
| O(3)—C(19)        | 1.41(2)    | C(24) - C(23) - Te(3)    | 121.8(12) |  |  |  |  |
| C(22)—C(21)       | 1.37(2)    | C(22)-C(23)-Te(3)        | 121.5(12) |  |  |  |  |
| C(6)—C(5)         | 1.39(2)    | C(21)-C(20)-C(25)        | 119.3(17) |  |  |  |  |
| C(30)—C(31)       | 1.33(2)    | C(21)—C(20)—O(3)         | 116.5(14) |  |  |  |  |
| C(30)—C(35)       | 1.36(2)    | C(25)-C(20)-O(3)         | 124.2(16) |  |  |  |  |
| C(33)—C(34)       | 1.34(2)    | C(23) - C(24) - C(25)    | 122.3(15) |  |  |  |  |
| C(33)—O(4)        | 1.368(19)  | N(2D) - C(28) - C(29)    | 113.3(15) |  |  |  |  |
| C(33)—C(32)       | 1.38(3)    | C(20)-C(25)-C(24)        | 119.7(16) |  |  |  |  |
| C(31)—C(32)       | 1.41(2)    | C(20) - O(3) - C(19)     | 117.8(14) |  |  |  |  |
| C(31)—H(31)       | 0.9300     | C(31)-C(30)-C(35)        | 120.7(17) |  |  |  |  |
| C(32)—H(32)       | 0.9300     | C(31)-C(30)-Te(4)        | 117.2(14) |  |  |  |  |
| O(4)—C(36)        | 1.43(2)    | C(35)-C(30)-Te(4)        | 122.0(13) |  |  |  |  |
| C(35)—C(34)       | 1.42(2)    | C(34) - C(33) - O(4)     | 122.8(18) |  |  |  |  |
|                   |            | C(34) - C(33) - C(32)    | 120.5(16) |  |  |  |  |
|                   |            | O(4) - C(33) - C(32)     | 116.7(17) |  |  |  |  |
|                   |            | C(30) - C(31) - C(32)    | 119.1(18) |  |  |  |  |
|                   |            | C(33)-C(32)-C(31)        | 120.2(17) |  |  |  |  |
|                   |            | C(33)—O(4)—C(36)         | 119.5(16) |  |  |  |  |
|                   |            | C(30) - C(35) - C(34)    | 120.9(17) |  |  |  |  |
|                   |            |                          |           |  |  |  |  |
|                   |            |                          |           |  |  |  |  |
|                   |            |                          |           |  |  |  |  |
|                   |            |                          |           |  |  |  |  |
|                   |            |                          |           |  |  |  |  |

## Table S3. Selected Bond Lengths and Bond Angles of Complex 3



Figure S2. Intermolecular C–H···Cl, N–H···Cl and Pd–Cl···H interactions in complex 2



Figure S3. Intermolecular N-H···Cl and C-H···Cl interactions in complex 3



Figure. S4. HRTEM images for NPs obtained from complexes 1, 2 and 3 respectively (Scale bar

50 nm)



Figure S6. <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of L1



Figure S8.  $^{13}C{^{1}H}$  NMR Spectrum of L2



Figure S10. <sup>1</sup>H NMR Spectrum of L3



Figure S12. <sup>125</sup>Te{<sup>1</sup>H} NMR Spectrum of L3



Figure S14. <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of Complex 1



Figure S16. <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of Complex 2



Figure S18. <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of Complex 3



Figure S19. Mass Spectra of L1



Figure S20. Mass Spectra of L2



#### Analysis Info

4

D:\Data\JUNE\_2013\SAT-2.d Analysis Name tune\_low.m Method

6/5/2013 10:36:05 AM Acquisition Date

Sharma/Singh Operator



Instrument / Ser# micrOTOF-Q II 10262



Figure S21. Mass Spectra of L3

|                                                   |                              | Mass S                       | pectrum Sn                                                                    | nartForn                                  | nula         | Repor                                           | rt                                 |                          |                                    |            |
|---------------------------------------------------|------------------------------|------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|--------------|-------------------------------------------------|------------------------------------|--------------------------|------------------------------------|------------|
| Analysis Info                                     |                              |                              |                                                                               |                                           | Acqu         | uisition Da                                     | te 2                               | 2/15/2013                | 10:11:5                            | 5 AM       |
| Analysis Name<br>Method<br>Sample Name<br>Comment | D:\Data<br>tune_lo<br>td     | \FEB_2013\F-1.d<br>w.m       |                                                                               |                                           | Ope<br>Instr | rator<br>ument / Se                             | er# n                              | Sharma/Sir<br>nicrOTOF-  | ngh<br>QII 10                      | )262       |
| Acquisition Par                                   | ameter                       |                              |                                                                               |                                           |              |                                                 |                                    |                          |                                    |            |
| Source Type<br>Focus<br>Scan Begin<br>Scan End    | ESI<br>Not a<br>50 m<br>1500 | active S<br>h/z S<br>) m/z S | on Polarity<br>Set Capillary<br>Set End Plate Offset<br>Set Collision Cell RF | Positive<br>4500 V<br>-500 V<br>100.0 Vpp |              | Set Nebu<br>Set Dry H<br>Set Dry G<br>Set Diver | ilizer<br>leater<br>Sas<br>t Valve | 0.:<br>18<br>4.:<br>e So | 3 Bar<br>30 °C<br>0 I/min<br>ource |            |
|                                                   |                              |                              |                                                                               |                                           |              |                                                 |                                    |                          | +MS, (                             | 0.6min #38 |
|                                                   |                              | 431.9673                     |                                                                               |                                           |              |                                                 |                                    |                          |                                    |            |
| 137.                                              | 0468                         | 1                            | 573.2515                                                                      | 881.7                                     | 449 10       | 17.8811                                         |                                    |                          |                                    |            |
| Meas. n                                           | n/z #                        | Formula                      | Score                                                                         | m/z                                       | err<br>[ppm] | Mean<br>err<br>[ppm]                            | mSi<br>m                           | g rdb<br>a               | e <sup>–</sup><br>Conf             | N-R<br>ule |
| 429.96                                            | 678 1                        | C 16 H 19 CI N Pd            | S 2 100.00                                                                    | 429.9679                                  | 0.1          | 0.8                                             | 16.                                | 9 7.5                    | even                               | ok         |

Figure S22. Mass Spectra of Complex 1



Figure S23. Mass Spectra of Complex 2



Figure S24. Mass Spectra of Complex 3



Figure S25. SEM image of NPs obtained from Complex 1 during Suzuki-Miyaura Coupling



Figure S26. SEM image of NPs obtained from Complex 2 during Suzuki-Miyaura Coupling



Figure S27. SEM image of NPs obtained from Complex 3 during Suzuki-Miyaura Coupling





Figure S28. SEM–EDX of NPs obtained from Complex 1 during Suzuki-Miyaura Coupling





Figure S29. SEM-EDX of NPs obtained from Complex 2 during Suzuki-Miyaura Coupling





Figure S30. SEM-EDX of NPs obtained from Complex 3 during Suzuki-Miyaura Coupling



Figure S31. TGA of NPs obtained from Complex 1 during Suzuki–Miyaura Coupling

# Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013



Figure S32. TGA of NPs obtained from Complex 2 during Suzuki–Miyaura Coupling



Figure S33. TGA of NPs obtained from Complex 3 during Suzuki-Miyaura Coupling