Structure, EPR/ENDOR and DFT characterisation of a [Cu^{II}(en)₂](OTf)₂ complex.

E. Louise Hazeland, Emma Carter*, Damien M. Murphy and Benjamin D. Ward*

Electronic Supplementary Information

Contents

- 1. X-ray data.
- 2. Computational data.
- 3. Additional X-band CW and pulsed EPR and ENDOR data.

Table S1. X-ray data for [Cu(en)₂](OTf)₂ 1

	1
Empirical formula	$C_6H_{16}CuF_6N_4O_6S_2$
Formula weight	481.89
Crystal size/mm	$0.18 \times 0.10 \times 0.02$
Crystal system	Monoclinic
Space group	$P2_1/n$
a/Å	16.7332(6)
b/Å	10.3150(4)
$c/\text{\AA}$	20.3164(14)
α/°	90
β/°	101.664(7)
$\gamma/^{\circ}$	90
$V/Å^3$	3434.3(3)

Z	8
$D_c/Mg m^{-3}$	1.864
µ/mm ⁻¹	1.609
T/K	100(2)
<i>F</i> (000)	1944
Refl. collected	23245
Refl. indep. (R _{int})	7846 (0.0242)
Data/rest./par.	7846/16/515
Goodness of fit on F^2	1.097
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0251, wR_2 = 0.0683$
R indices (all data)	$R_1 = 0.0301, wR_2 = 0.0703$
Largest residual peak and	0.497 and -0.362
hole/e Å ⁻³	

2. Computational data

All calculations were performed using the Gaussian 09 program. The structure of $[Cu(en)_2(OTf)_2]$ **1** was optimised without geometry restraints using the unrestricted B3LYP hybrid functional, employing the 6-31+G(d,p) basis set on all atoms. The geometry optimisation was followed by a frequency calculation to ascertain the nature of the stationary point (minimum *vs.* saddle point). TD-DFT calculations were performed on the optimised geometry.

Cartesian coordinates of $[Cu(en)_2](OTf)_2$ 1.

Cu	-0.00106	0.0005	-0.00075
Н	0.60215	1.61567	1.85931
Н	-1.06016	1.55655	1.80837
Н	1.37653	1.05136	-1.84765
Н	-0.22125	1.48595	-2.0889
S	3.27949	-0.58813	-0.13393
S	-3.28021	0.58815	0.13715
Н	1.06163	-1.55383	-1.80728
Н	-0.60063	-1.61515	-1.86255
Н	0.22527	-1.4851	2.08588
Н	-1.37362	-1.05119	1.84936
F	4.74655	1.63167	-0.02573
F	5.29814	0.12629	1.45138
F	5.85612	-0.14266	-0.6382
F	-4.74341	-1.63373	0.01825
F	-5.29676	-0.12269	-1.45232
F	-5.85632	0.13589	0.63814
0	2.3321	0.06072	0.83046
0	3.55364	-2.00834	0.13748
0	2.95992	-0.25663	-1.55368

0	-2.33142	-0.05516	-0.8297
0	-3.55655	2.00897	-0.12861
0	-2.96077	0.25128	1.55556
Ν	-0.2117	1.63365	1.24504
Ν	0.52441	1.40115	-1.39957
Ν	0.21171	-1.6325	-1.24633
Ν	-0.52253	-1.40035	1.39882
С	-0.22766	2.86715	0.41522
Н	0.00907	3.75772	1.00867
Н	-1.24196	2.97949	0.02198
С	0.78181	2.69545	-0.71721
Н	0.7257	3.5393	-1.4137
Н	1.79866	2.65086	-0.31826
С	0.22714	-2.86623	-0.41685
Н	1.24154	-2.97953	-0.02406
Н	-0.0105	-3.75646	-1.01043
С	-0.78133	-2.69435	0.71648
Н	-1.79866	-2.64905	0.31889
Н	-0.72486	-3.53842	1.4127
С	4.89898	0.30764	0.18329
С	-4.89796	-0.30902	-0.18489

TD-DFT calculated excited state:

Multiplicity and symmetry: 2.001-A

Energy: 2.3134 eV, 535.95 nm

Oscillator strength: f=0.0000

S²: 0.751

Principal Orbital contributions:

107B ->122B	38.7%
110B ->122B	50.7%
112B ->122B	1.5%
119B ->122B	3.1%
121B ->122B	3.6%

Fig S1a; Molecular orbital 107B of [Cu(en)₂](OTf)₂

Fig S1b; Molecular orbital 110B of [Cu(en)₂](OTf)₂

Fig S1c; Molecular orbital 122B of [Cu(en)₂](OTf)₂

Fig S2; CW EPR spectrum (298 K) of [Cu(en)₂](OTf)₂ dissolved in acetonitrile:tetrahydrofuran (1:1). a) experimental and a') simulation.

Fig S3; Field Sweep Echo Detected EPR spectrum (10 K) of $[Cu(en)_2](OTf)_2$ a) experimental and a') simulation.

Fig S4 Pulsed Davies ENDOR spectra of $[Cu(en)_2](OTf)_2$ **1** recorded at a) 350 mT and b) 288 mT. Corresponding simulations are shown in a',b'. The spectra were taken at 10 K, with a repetition rate of 333 kHz. The pulse sequence π -T- $\pi/2$ - τ - π - τ -echo using mw pulse lengths of $t_{\pi} = 256$ ns, $t_{\pi/2} = 128$ ns, and an interpulse time τ of 820 ns was used. An rf π pulse of variable frequency and a length of 8 µs was applied during time T of 10 µs.

Fig S5; Schematic illustration of the Cu(II) complexes referenced in Table 3 (main text).