Supporting Information

Photoresponsive dendron-like metallocomplexes of the crowncontaining styryl derivatives of 2,2'-bipyridine

Nikolay E. Shepel, Olga A. Fedorova, Elena N. Gulakova, Alexander S. Peregudov, Valentin V. Novikov and Yuri V. Fedorov

Contents

1. Spectrophotometric data (fig. S1-S15)	2
2. ESI-MS data (fig. S16)	6
3. NMR data (Table S1, fig. S17, 18)	7
4. Fluorescent data (fig.S19)	9

Figure S1. Absorption spectra of *E*-1 (1) and its complex $[\mathbf{1}_3 \cdot \mathbf{Zn}^{2+}]$ (2) in CH₃CN calculated from spectrophotometric titration data.

Figure S2. Concentrations of free 1 (1) and its complex $[1_3 \cdot (Zn^{2+})_1]$ (2) as a function of total Zn^{2+} concentration, calculated from spectrophotometric titration data.

Figure S3. Variation of the *E*,*E*-**2** ([2]=2.1×10⁻⁵ M) absorption spectrum in CH₃CN (2) with increasing concentration of $Zn(ClO_4)_2$ ([Zn^{2+}] = from 0 (2) to 1.2×10^{-5} M ([$2_3 \cdot Zn^{2+}$])).

Figure S4. Absorption spectra of *E*,*E*-**2** (1) and its complex $[\mathbf{2}_3 \cdot \mathbf{Zn}^{2+}]$ (2) in CH₃CN calculated from spectrophotometric titration data.

Figure S5. Concentrations of free *E*,*E*-**2** (*1*) and its complex $[\mathbf{2}_3 \cdot (\mathbf{Zn}^{2+})_1]$ (*2*) as a function of total \mathbf{Zn}^{2+} concentration, calculated from spectrophotometric titration data.

Fig. S6. Variation of the *E*-1 (1) ([1]= 3.1×10^{-5} M) absorption spectrum in CH₃CN with increasing concentrations of Ca(ClO₄)₂ ([Ca²⁺] = from 9.9×10^{-5} M to 7.0×10^{-3} M).

Figure S7. Absorption spectra of **1** (1) and its complexes $[\mathbf{1}_1 \cdot (\mathbf{Ca}^{2+})_1]$ (2) and $[\mathbf{1}_1 \cdot (\mathbf{Ca}^{2+})_2]$ (3) in CH₃CN calculated from spectrophotometric titration data.

Figure S8. Concentrations of free **1** (1) and its complexes $[\mathbf{1}_1 \cdot (\mathbf{Ca}^{2+})_1]$ (2) and $[\mathbf{1}_1 \cdot (\mathbf{Ca}^{2+})_2]$ (3) as a function of total \mathbf{Ca}^{2+} concentration, calculated from spectrophotometric titration data.

Figure S9. Spectrophotometric titration at 351 nm of a 3.1×10^{-5} M acetonitrile solution of **1** with Ca(ClO₄)₂. The magenta line indicates the best fit curve.

Figure S10. Variation of the *E*,*E*-**2** ([2]= 2.1×10^{-5} M) absorption spectrum in CH₃CN (2) with increasing concentration of Ca(ClO₄)₂ ([Ca²⁺] = from 0 (2) to 3.8×10^{-4} M ([2 (Ca²⁺)₂])).

Figure S11. Absorption spectra of *E*,*E*-**2** (1) and its complexes $[\mathbf{2}_1 \cdot (\mathbf{Ca}^{2+})_1]$ (2) and $[\mathbf{2}_1 \cdot (\mathbf{Ca}^{2+})_2]$ (3) in CH₃CN calculated from spectrophotometric titration data.

Figure S12. Concentrations of free *E*,*E*,-2 (*1*) and its complexes $[2_1 \cdot (Ca^{2+})_1]$ (*2*) and $[2_1 \cdot (Ca^{2+})_2]$ (*3*) as a function of total Ca^{2+} concentration, calculated from spectrophotometric titration data.

Figure S13. Spectrophotometric titration at 351 nm of a 2.1×10^{-5} M acetonitrile solution of *E*,*E*-**2** with Ca(ClO₄)₂. The magenta line indicates the best fit curve.

Figure S14. Variation of the $2_3 \cdot (Zn^{2+})_1$ ([C]= 3.5×10^{-6} M) absorption spectra in CH₃CN ([$2_3 \cdot Zn^{2+}$]) with increasing concentration of Ca(ClO₄)₂ ([Ca²⁺] = from 0 ([$2_3 \cdot Zn^{2+}$]) to 8.3×10^{-3} M).

Figure S15. Absorption spectra of *E*,*E*-**2** (1) and its complexes $[2_3 \bullet Zn^{2+}]$ (2), $[(Ca^{2+})_1 \bullet 2_3 \bullet (Zn^{2+})_1]$ (3) and $[(Ca^{2+})_2 \bullet 2_2 \bullet (Zn^{2+})_1]$ (4) in CH₃CN calculated from spectrophotometric titration data.

Figure S16. Concentrations of free *E*,*E*,-2 (*1*) and its complexes $[\mathbf{2}_3 \cdot (\mathbf{Zn}^{2+})_1]$ (*2*), $[(\mathbf{Ca}^{2+})_1 \cdot \mathbf{2}_3 \cdot (\mathbf{Zn}^{2+})_1]$ (*3*) and $[(\mathbf{Ca}^{2+})_2 \cdot \mathbf{2}_2 \cdot (\mathbf{Zn}^{2+})_1]$ (*4*) as a function of total \mathbf{Ca}^{2+} concentration, calculated from spectrophotometric titration data.

Figure S17. ESI-MS spectra of **1** in CH₃CN in the presence of Ca(ClO₄)₂ ([**1**] = 1×10^{-4} M, [Ca²⁺] = 8×10^{-4} M)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

Table S1. Chemical shifts (δ , ppm) of protons of *E*-1 and their changes by complex formation in the presence of Zn²⁺ or/and Ca²⁺ ($\Delta \delta = \delta_1 - \delta_{complex}$), CD₃CN, 25°C.

$1_2 \cdot (\mathrm{Ca}^{2+})_2 \cdot \mathrm{Zn}^{2+}$	8.66	8.53	7.85	7.65	8.68	8.62	7.81	7.41	7.64	7.27	7.48	4.46	4.54	4.06,	3.98	3.96	2.62
$\Delta\delta$														4.08			
	0.16	0.26	0.36	0.42	0.09	0.10	0.36	0.23	0.37	0.33	0.31	0.35	0.39	0.26,	0.36	0.30	0.18
														0.26			

Fig. S17 . NMR specrum of E, E-2 in $(CD_3)_2SO$, $T = 25^{\circ}C$.

Fig. S18. NMR EXSY spectrum of $[\mathbf{1}_3 \cdot \mathbf{Zn}^{2+}] + 40$ eq. $Ca^{2+} + 3$ eq. Zn^{2+} sample. CD_3CN , 25°C, EXSY mixing time 300 ms.

Fig. S19. Fluorescence emission spectra of **2** ([**2**] = 2.1×10^{-6} M) as free ligand (1), in the presence of Zn^{2+} ([Zn^{2+}] = 0.7×10^{-6} M) (4), in the presence of Ca^{2+} ([Ca^{2+}] = 2.0×10^{-5} M) (2), ([Ca^{2+}] = 1.9×10^{-4} M) (3), and in the presence of both Ca^{2+} and Zn^{2+} ([Ca^{2+}] = 2.0×10^{-6} M) (5), ([Ca^{2+}] = 9.8×10^{-4} M, [Zn^{2+}] = 2.0×10^{-6} M) (6). $\lambda_{\text{excit.}}$ = 300 nm, CH₃CN, 20°C.