**Supporting Information** 

for

## Electronic Tuning of Nitric Oxide Release from Manganese Nitrosyl Complexes by Visible Light Irradiation: Enhancement of Nitric Oxide Release Efficiency by Nitro-Substituted Quinoline Ligand

Yutaka Hitomi\*, Yuji Iwamoto, Masahito Kodera

Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, 610-0321 Kyoto, Japan

yhitomi@mail.doshisha.ac.jp



**Fig. S1** <sup>1</sup>H NMR spectra of  $1^{OMe}$  (A),  $1^{H}$  (B),  $1^{Cl}$  (C) and  $1^{NO2}$  (D) in CD<sub>3</sub>CN.



Fig. S2 ATR-IR spectra of 1<sup>R</sup> (R: OMe, green; H, blue; Cl, purple and NO<sub>2</sub>, red).



**Fig. S3** Cyclic voltamogram of  $\mathbf{1}^{\mathbf{R}}$  (R: OMe, green; H, blue; Cl, purple and NO<sub>2</sub>, red) in deaerated CH<sub>3</sub>CN containing 0.1 M *n*-Bu<sub>4</sub>NClO<sub>4</sub> at 25°C; working electrode Pt, counter electrode Pt, reference electrode Ag/AgCl in CH<sub>3</sub>CN, scan rate 20 mV s<sup>-1</sup>.  $E_{1/2}$  (*vs.* Fc<sup>+</sup>/Fc ( $\Delta E$ )): 0.49 V (75 mV) for R = OMe; 0.52 V (71 mV) for R = H; 0.56 V (73 mV) for R = Cl and 0.63 V (81 mV) for R = NO<sub>2</sub>.



**Fig. S4** Electric absorption spectra of  $1^{R}$  (R: OMe, green; H, blue; Cl, purple and NO<sub>2</sub>, red) in MES buffer (pH 7.2) at 20 °C. Vertical dotted lines show the wavelengths of light irradiation (460, 530 and 650 nm).



**Fig. S5** Conversion of reduced myoglobin (ca. 1.7  $\mu$ M,  $\lambda_{max} = 431$  nm) to the NO adduct of myoglobin ( $\lambda_{max} = 422$  nm) by the photolysis of **1**<sup>NO2</sup> (20  $\mu$ M) in MES buffer (pH 7.2) under N<sub>2</sub>.



**Fig. S6** Electronic spectral change of solutions of  $1^{OMe}$  (left),  $1^{H}$  (middle) and  $1^{Cl}$  (right) in MES buffer (pH 7.2, 5% DMSO) at 20 °C under irradiation at 650 nm. The arrows indicate a decrease in band intensities as the reaction proceeds. Inset: Time profiles of the absorbance at 457 nm for  $1^{OMe}$ , 461 nm for  $1^{H}$  and 475 nm for  $1^{Cl}$ .

|                                                   | 1 <sup>OMe</sup>                                                    | 1 <sup>H</sup>                                                      | 1 <sup>CI</sup>                                                                  | 1 <sup>NO2</sup>                                                    |
|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Empirical formula                                 | C <sub>24</sub> H <sub>22</sub> Cl Mn N <sub>6</sub> O <sub>7</sub> | C <sub>23</sub> H <sub>20</sub> Cl Mn N <sub>6</sub> O <sub>6</sub> | C <sub>23</sub> H <sub>19</sub> Cl <sub>2</sub> Mn N <sub>6</sub> O <sub>6</sub> | C <sub>25</sub> H <sub>22</sub> Cl Mn N <sub>8</sub> O <sub>8</sub> |
| Formula weight                                    | 596.87                                                              | 566.84                                                              | 601.28                                                                           | 652.90                                                              |
| Crystal color and habit                           | brown platelet                                                      | brown block                                                         | brown platelet                                                                   | brown chip                                                          |
| Crystal size (nm)                                 | $0.29 \times 0.19 \times 0.10$                                      | $0.30 \times 0.10 \times 0.10$                                      | $0.08 \times 0.05 \times 0.03$                                                   | $0.30 \times 0.10 \times 0.10$                                      |
| Temperature (K)                                   | 133                                                                 | 133                                                                 | 133                                                                              | 133                                                                 |
| Crystal system                                    | triclinic                                                           | monoclinic                                                          | monoclinic                                                                       | monoclinic                                                          |
| Space group                                       | <i>P</i> -1                                                         | $P2_{1}/n$                                                          | $P2_{1}/c$                                                                       | Pc                                                                  |
| <i>a</i> (Å)                                      | 8.6256(5)                                                           | 12.3007(5)                                                          | 8.88120(10)                                                                      | 8.50240(10)                                                         |
| <i>b</i> (Å)                                      | 11.7224(9)                                                          | 13.3626(6)                                                          | 10.14710(10)                                                                     | 7.29870(10)                                                         |
| <i>c</i> (Å)                                      | 13.1577(10)                                                         | 14.1948(7)                                                          | 26.2914(5)                                                                       | 21.7032(5)                                                          |
| α (°)                                             | 71.050(4)                                                           | 90                                                                  | 90                                                                               | 90                                                                  |
| β (°)                                             | 87.566(4)                                                           | 107.070(2)                                                          | 92.9655(8)                                                                       | 98.8707(11)                                                         |
| γ (°)                                             | 80.591(3)                                                           | 90                                                                  | 90                                                                               | 90                                                                  |
| Volume (Å <sup>3</sup> )                          | 1241.30(15)                                                         | 2230.41(17)                                                         | 2366.17(6)                                                                       | 1330.71(4)                                                          |
| Ζ                                                 | 2                                                                   | 4                                                                   | 4                                                                                | 2                                                                   |
| $D_{\text{calc}}$ (Mg/m <sup>3</sup> )            | 1.597                                                               | 1.688                                                               | 1.688                                                                            | 1.642                                                               |
| Absorption coefficient, $\mu$ (mm <sup>-1</sup> ) | 5.829                                                               | 6.417                                                               | 7.104                                                                            | 5.549                                                               |
| Reflections collected                             | 16650                                                               | 28188                                                               | 31658                                                                            | 10774                                                               |
| Independent reflections $[R_{int}]$               | 2542 [0.1127]                                                       | 2237 [0.1213]                                                       | 2634 [0.0515]                                                                    | 2990 [0.0777]                                                       |
| Max. and min. transmission                        | 0.5933 and 0.2827                                                   | 0.5660 and 0.2489                                                   | 0.8151 and 0.6003                                                                | 0.6068 and 0.2868                                                   |
| Goodness-of-fit on $F^2$                          | 1.126                                                               | 1.090                                                               | 1.057                                                                            | 1.031                                                               |
| Final <i>R</i> indices $[I > 2\sigma(I)]$         | $R_1 = 0.0752, wR_2 = 0.1902$                                       | $R_1 = 0.1080, wR_2 = 0.2588$                                       | $R_1 = 0.0346, wR_2 = 0.0766$                                                    | $R_1 = 0.0522, wR_2 = 0.1136$                                       |
| R indices (all data)                              | $R_1 = 0.0969, wR_2 = 0.2268$                                       | $R_1 = 0.1479, wR_2 = 0.3130$                                       | $R_1 = 0.0424, wR_2 = 0.0809$                                                    | $R_1 = 0.0599, wR_2 = 0.1229$                                       |

**Table S1.** Summary of Crystal Data and Intensity Collection and Structural Refinement Parameters for **1**<sup>R</sup> Derivatives.

## Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

## Table S2. Selected Bond Lengths (Å) and Angles (deg) for $1^{R}$ Derivatives

|                 | 1 <sup>OMe</sup> | 1 <sup>H</sup> | 1 <sup>Cl</sup> | 1 <sup>NO2</sup> |  |
|-----------------|------------------|----------------|-----------------|------------------|--|
| Mn(1)-N(1)      | 2.000(7)         | 2.036(11)      | 2.008(3)        | 2.024(5)         |  |
| Mn(1)-N(2)      | 2.028(7)         | 2.121(9)       | 2.044(3)        | 2.075(6)         |  |
| Mn(1)-N(3)      | 2.063(6)         | 2.120(10)      | 2.068(3)        | 2.061(5)         |  |
| Mn(1)-N(4)      | 1.923(7)         | 1.998(9)       | 1.941(3)        | 1.957(5)         |  |
| Mn(1)-N(5)      | 2.015(6)         | 2.129(9)       | 2.038(3)        | 2.052(5)         |  |
| Mn(1)-N(6)      | 1.742(8)         | 1.635(12)      | 1.713(4)        | 1.660(5)         |  |
| N(6)-O(2)       | 1.015(7)         | 1.022(16)      | 1.044(4)        | 1.136(7)         |  |
| C(20)-O(1)      | 1.247(9)         | 1.225(15)      | 1.240(4)        | 1.217(7)         |  |
| O(2)-N(6)-Mn(1) | 176.7(8)         | 171(2)         | 171.3(3)        | 175.8(6)         |  |
| N(6)-Mn(1)-N(4) | 177.0(3)         | 176.9(6)       | 173.37(13)      | 176.4(2)         |  |
| N(6)-Mn(1)-N(1) | 96.0(3)          | 98.1(7)        | 94.74(13)       | 96.6(2)          |  |
| N(4)-Mn(1)-N(1) | 81.3(3)          | 78.9(5)        | 80.50(12)       | 80.1(2)          |  |
| N(6)-Mn(1)-N(5) | 99.3(3)          | 100.7(6)       | 101.98(13)      | 99.5(2)          |  |
| N(4)-Mn(1)-N(5) | 83.4(3)          | 82.3(4)        | 82.87(11)       | 83.8(2)          |  |
| N(1)-Mn(1)-N(5) | 164.7(3)         | 161.0(4)       | 163.26(12)      | 163.72(18)       |  |
| N(6)-Mn(1)-N(2) | 92.7(3)          | 92.3(6)        | 93.81(13)       | 95.2(2)          |  |
| N(4)-Mn(1)-N(2) | 86.6(2)          | 87.4(3)        | 91.45(11)       | 86.7(2)          |  |
| N(1)-Mn(1)-N(2) | 99.3(3)          | 96.7(4)        | 98.15(12)       | 101.4(2)         |  |
| N(5)-Mn(1)-N(2) | 81.0(3)          | 80.1(4)        | 80.32(12)       | 79.9(2)          |  |
| N(6)-Mn(1)-N(3) | 94.7(3)          | 90.4(6)        | 91.57(13)       | 93.5(2)          |  |
| N(4)-Mn(1)-N(3) | 86.8(2)          | 91.0(3)        | 84.60(11)       | 85.6(2)          |  |
| N(1)-Mn(1)-N(3) | 97.0(3)          | 104.3(4)       | 98.37(12)       | 95.6(2)          |  |
| N(5)-Mn(1)-N(3) | 80.8(3)          | 78.2(4)        | 81.89(12)       | 80.8(2)          |  |
| N(2)-Mn(1)-N(3) | 161.3(3)         | 158.2(5)       | 162.12(12)      | 159.9(2)         |  |

 Table S3. <sup>1</sup>H NMR Signal Assignment of 1<sup>R</sup> Derivatives



|                      | 1 <sup>OMe</sup>                      | 1 <sup>H</sup>                        | 1 <sup>CI</sup>                  | 1 <sup>NO2</sup>                 |
|----------------------|---------------------------------------|---------------------------------------|----------------------------------|----------------------------------|
| Py3                  | 6.33 (d, 2H, <i>J</i> = 5.2 Hz)       | 6.31 (d, 2H, <i>J</i> = 5.7 Hz)       | 6.35 (d, 2H, <i>J</i> = 5.2 Hz)  | 6.41 (d, 2H, <i>J</i> = 5.2 Hz)  |
| Py4                  | 7.82 (t, 2H, <i>J</i> = 7.7 Hz)       | 7.83 (t, 2H, <i>J</i> = 7.7 Hz)       | 7.84 (t, 2H, <i>J</i> = 7.7 Hz)  | 7.85 (m, 3H)                     |
| Py5                  | 7.02 (t, 2H, <i>J</i> = 6.6 Hz)       | 7.02 (t, 2H, $J = 6.6$ Hz)            | 7.03 (t, 2H, $J = 6.6$ Hz)       | 7.05 (t, 2H, $J = 6.3$ Hz)       |
| Руб                  | 7.47 (d, 2H, <i>J</i> = 8.0 Hz)       | 7.48 (d, 2H, <i>J</i> = 8.0 Hz)       | 7.48 (d, 2H, <i>J</i> = 8.0 Hz)  | 7.46 (d, 2H, $J = 8.0$ Hz)       |
| Qu2                  | 9.27 (dd, 1H, <i>J</i> = 1.7, 5.2 Hz) | 9.25 (d, 1H, <i>J</i> = 5.2 Hz)       | 9.33 (d, 1H, <i>J</i> = 5.0 Hz)  | 9.39 (d, 1H, <i>J</i> = 5.2 Hz)  |
| Qu3                  | 7.63 (dd, 1H, <i>J</i> = 5.1, 8.5 Hz) | 7.65 (dd, 1H, <i>J</i> = 5.1, 8.3 Hz) | 7.77 (m, 2H??)                   | 7.85 (m, 3H???)                  |
| Qu4                  | 8.63 (dd, 1H, <i>J</i> = 8.6, 1.2 Hz) | 8.39 (d, 1H, <i>J</i> = 8.6 Hz)       | 8.63 (d, 1H, <i>J</i> = 8.6 Hz)  | 9.27 (d, 1H, <i>J</i> = 8.6 Hz)  |
| Qu5                  | -                                     | 7.63 (d, 1H, <i>J</i> = 8.0 Hz)       | _                                | _                                |
| Qu6                  | 7.15 (d, 1H, <i>J</i> = 8.6 Hz)       | 7.72 (t, 1H, <i>J</i> = 8.0, 8.0 Hz)  | 7.77 (m, 2H)                     | 8.67 (d, 1H, <i>J</i> = 8.6 Hz)  |
| Qu7                  | 8.90 (d, 1H, <i>J</i> = 8.6 Hz)       | 8.97 (d, 1H, <i>J</i> = 8.0 Hz)       | 8.92 (d, 1H, <i>J</i> = 8.6 Hz)  | 8.96 (d, 1H, <i>J</i> = 8.6 Hz)  |
| -CH <sub>2</sub> CO- | 3.95 (s, 2H)                          | 4.00 (s, 2H)                          | 3.99 (s, 2H)                     | 4.05 (s, 2H)                     |
| PyCH <sub>2</sub> -  | 4.55 (d, 2H, <i>J</i> = 15.5 Hz)      | 4.57 (d, 2H, <i>J</i> = 15.5 Hz)      | 4.56 (d, 2H, <i>J</i> = 15.5 Hz) | 4.59 (d, 2H, <i>J</i> = 15.5 Hz) |
| PyCH <sub>2</sub> -  | 4.35 (d, 2H, <i>J</i> = 15,5 Hz)      | 4.37 (d, 2H, <i>J</i> = 15.5 Hz)      | 4.36 (d, 2H, <i>J</i> = 15.5 Hz) | 4.38 (d, 2H, <i>J</i> = 15.5 Hz) |
| $OCH_3$              | 4.03 (s, 3H)                          | -                                     | -                                | _                                |

|                           | H-dpaq <sup>R</sup> in CH <sub>3</sub> CN | [Mn <sup>II</sup> (dpaq <sup>R</sup> )]ClO <sub>4</sub> in CH <sub>3</sub> CN | 1 <sup>R</sup> in CH <sub>3</sub> CN             | <b>1<sup>R</sup></b> in MES buffer (pH 7.2) |
|---------------------------|-------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| R = OMe                   | 346 (4740), 252 (38700)                   | 405 (3320), 346 (2330), 264 (33200)                                           | 459 (5090), 356 (2450), 265 (25300)              | 457 (4230), 398 (3830)                      |
| $\mathbf{R} = \mathbf{H}$ | 320 (5780), 244 (40800)                   | 375 (4500), 262 (37100)                                                       | 459 (3940), 382 (4160), 259 (25900)              | 461 (3120), 357 (3910)                      |
| R = Cl                    | 333 (6940), 246 (34300)                   | 388 (5330), 264 (25900)                                                       | 474 (3760), 398 (5140), 260 (26900)              | 475 (2960), 375 (4560)                      |
| $R = NO_2$                | 368 (13600), 241 (24400)                  | 428 (19100), 322 (3990), 262 (22900)                                          | 513 (2070), 423 (14500), 314 (5870), 264 (20600) | 523 (1570), 392 (10300)                     |

**Table S5.** Electronic Absorption Bands of Ligands and Complexes<sup>a</sup>

<sup>*a*</sup> Molar extinction coefficient  $(M^{-1}cm^{-1})$  in parentheses.

| Table S6. Initial Rate Constant of the Decom | position of {MnNO} <sup>6</sup> | Complexes Under l | Light Irradiation |
|----------------------------------------------|---------------------------------|-------------------|-------------------|

| complex ———      |               | $k_{\rm int} (\mu { m M \ s}^{-1})$ |                     |
|------------------|---------------|-------------------------------------|---------------------|
|                  | 460 nm        | 530 nm                              | 650 nm              |
| 1 <sup>OMe</sup> | $1.71\pm0.05$ | $0.254\pm0.004$                     | $0.0835 \pm 0.0009$ |
| 1 <sup>H</sup>   | $1.79\pm0.02$ | $0.300\pm0.005$                     | $0.0999 \pm 0.0018$ |
| 1 <sup>CI</sup>  | $1.26\pm0.13$ | $0.494 \pm 0.013$                   | $0.0988 \pm 0.010$  |
| 1 <sup>NO2</sup> | $0.84\pm0.05$ | $0.809 \pm 0.017$                   | $0.395\pm0.006$     |
| 2                | $2.94\pm0.11$ | $0.203\pm0.006$                     | $0.252\pm0.004$     |