Supporting information for:

Investigation of structure-properties relationship in a novel family of halogenoantimonates(III) and halogenobismuthates(III) with morpholinium cation: [NH₂(C₂H₄)₂O]MX₄. Crystal structure, phase transitions and dynamics of molecules.

M. Owczarek^{*a,b**}, R. Jakubas^{*a*}, A. Pietraszko^c, W. Medycki^{*d*}, J. Baran^{*c*}

^aFaculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
^bLaboratory of Neutron Physics, Joint Institute for Nuclear Research, 141-980 Dubna, Russia
^cInstitute of Low Temperature and Structural Research of the PAS, 2 Okólna, Wrocław, Poland
^dInstitute of Molecular Physics, PAS, M. Smoluchowskiego 17, 60-179 Poznań, Poland

1 Thermal properties of [morph]SbCl₄ and [morph]SbBr₄

Figure S1. Simultaneous thermogravimetric and differential thermal analyses scan (ramp rate: 2 K/min) for [morph]SbCl₄ (a) and [morph]SbBr₄ (b).

2 Crystal structure of [morph]SbCl4 and [morph]SbBr4

Table S1. Selected bond lengths (Å) and angles (°) for MX_6^{3-} moieties (M = Sb, X = Cl, Br) of [morph]SbCl₄ and [morph]SbBr₄ at 100 K.

[NH ₂ (C ₂ H ₄) ₂ O]SbCl ₄			
Sb(1)-Cl(4)	2.3798(5)	Cl(2)-Sb(1)-Cl(3)	172.520(8)
Sb(1)-Cl(1)	2.4031(6)	$Cl(4)-Sb(1)-Cl(3)^{i}$	81.56(2)
Sb(1)-Cl(2)	2.4897(7)	$Cl(1)-Sb(1)-Cl(3)^{i}$	168.328(9)
Sb(1)-Cl(3)	2.8456(8)	$Cl(2)-Sb(1)-Cl(3)^{i}$	83.58(2)
$Sb(1)$ - $Cl(3)^i$	3.1240(7)	$Cl(3)-Sb(1)-Cl(3)^{i}$	103.89(2)
$Sb(1)$ - $Cl(2)^{ii}$	3.2832(7)	Cl(4)-Sb(1)-Cl(2) ^{<i>ii</i>}	163.029(9)
Cl(4)-Sb(1)-Cl(1)	92.05(2)	Cl(1)- $Sb(1)$ - $Cl(2)$ ^{<i>ii</i>}	82.79(2)
Cl(4)-Sb(1)-Cl(2)	92.79(2)	Cl(2)-Sb(1)-Cl(2) ^{<i>ii</i>}	103.03(2)
Cl(1)-Sb(1)-Cl(2)	87.016(19)	Cl(3)-Sb(1)-Cl(2) ^{<i>ii</i>}	75.56(2)

Cl(4)-Sb(1)-Cl(3) Cl(1)-Sb(1)-Cl(3)	87.96(2) 85.519(18)	$\operatorname{Cl}(3)^{i}$ -Sb(1)-Cl(2) ^{<i>ii</i>}	106.03(2)	
[NH ₂ (C ₂ H ₄) ₂ O]SbBr ₄				
Sb(1)-Br(4)	2.5448(7)	Br(2)-Sb(1)-Br(3)	172.803(15)	
Sb(1)-Br(1)	2.5774(8)	$Br(4)$ - $Sb(1)$ - $Br(3)^{i}$	82.96(3)	
Sb(1)-Br(2)	2.6556(10)	$Br(1)-Sb(1)-Br(3)^{i}$	169.244(16)	
Sb(1)-Br(3)	3.0113(12)	$Br(2)-Sb(1)-Br(3)^{i}$	84.00(3)	
Sb(1)-Br(3) ^{<i>i</i>}	3.2042(9)	$Br(3)-Sb(1)-Br(3)^{i}$	102.39(3)	
Sb(1)-Br(2) ^{<i>ii</i>}	3.3266(10)	$Br(4)$ - $Sb(1)$ - $Br(2)^{ii}$	165.639(16)	
Br(4)-Sb(1)-Br(1)	92.42(3)	$Br(1)-Sb(1)-Br(2)^{ii}$	85.07(3)	
Br(4)-Sb(1)-Br(2)	95.10(3)	$Br(2)-Sb(1)-Br(2)^{ii}$	98.87(3)	
Br(1)-Sb(1)-Br(2)	86.76(3)	$Br(3)-Sb(1)-Br(2)^{ii}$	76.74(3)	
Br(4)- $Sb(1)$ - $Br(3)$	89.02(3)	$Br(3)^{i}-Sb(1)-Br(2)^{ii}$	101.76(3)	
Br(1)-Sb(1)-Br(3)	87.18(2)			

Symmetry codes: (*i*) -*x*+3/2, *y*-1/2, *z*; (*ii*) -*x*+3/2, *y*+1/2, *z*.

Figure S2. Selected structural parameters of [morph]SbCl₄ (a) and [morph]SbBr₄ (b).

3 Crystal structure of [morph]BiBr₄

Table S2. Selected bond lengths (Å) and angles (°) for $[BiBr_6]^{3-}$ moieties of $[morph]BiBr_4$ at 346, 300 and 210 K.

[NH ₂ (C ₂ H ₄) ₂ O]BiBr ₄				
346 K - phase I				
Bi(1)-Br(2)	2.6823(6)	Br(4)-Bi(1)-Br(3)	178.229(13)	
Bi(1)-Br(1)	2.7117(6)	$Br(2)-Bi(1)-Br(3)^{i}$	90.81(2)	
Bi(1)-Br(4)	2.8816(10)	$Br(1)-Bi(1)-Br(3)^{i}$	172.908(12)	
Bi(1)-Br(3)	2.9187(10)	$Br(4)-Bi(1)-Br(3)^{i}$	86.278(18)	
$\operatorname{Bi}(1)$ - $\operatorname{Br}(3)^i$	3.0961(6)	$Br(3)-Bi(1)-Br(3)^{i}$	93.584(18)	
$\operatorname{Bi}(1)$ -Br(4) ^{<i>ii</i>}	3.1653(6)	$Br(2)-Bi(1)-Br(4)^{ii}$	172.403(12)	
$Br(3)$ - $Bi(1)^{ii}$	3.0961(6)	$Br(1)-Bi(1)-Br(4)^{ii}$	91.77(2)	
$Br(4)$ - $Bi(1)^i$	3.1653(6)	Br(4)- $Bi(1)$ - $Br(4)$ ⁱⁱ	93.841(18)	
Br(2)-Bi(1)-Br(1)	92.49(2)	$Br(3)-Bi(1)-Br(4)^{ii}$	84.388(19)	
Br(2)-Bi(1)-Br(4)	92.64(2)	$Br(3)^{i}-Bi(1)-Br(4)^{ii}$	85.67(2)	
Br(1)-Bi(1)-Br(4)	87.30(2)	Bi(1)-Br(3)-Bi(1) ⁱⁱ	95.033(19)	
Br(2)-Bi(1)-Br(3)	89.13(2)	Bi(1)-Br(4)-Bi(1) ^{<i>i</i>}	94.298(18)	
Br(1)-Bi(1)-Br(3)	92.74(2)			
	300 K	- phase II		
Bi(1)-Br(2)	2.6567(4)	Br(4)-Bi(1)-Br(3)	175.841(7)	
Bi(1)-Br(1)	2.6628(4)	$Br(2)-Bi(1)-Br(3)^{i}$	85.250(18)	
Bi(1)-Br(4)	2.8006(10)	$Br(1)-Bi(1)-Br(3)^{i}$	170.534(7)	
Bi(1)-Br(3)	3.0015(10)	$Br(4)-Bi(1)-Br(3)^{i}$	83.337(16)	
Bi(1)-Br(3) ⁱ	3.1474(5)	$Br(3)-Bi(1)-Br(3)^{i}$	99.643(16)	
$Bi(1)-Br(4)^{ii}$	3.1642(5)	$Br(2)-Bi(1)-Br(4)^{ii}$	167.502(8)	
$Br(4)-Bi(1)^{i}$	3.1642(5)	$Br(1)-Bi(1)-Br(4)^{ii}$	90.124(18)	
$Br(3)-Bi(1)^{ii}$	3.1474(5)	$Br(4)-Bi(1)-Br(4)^{ii}$	97.011(16)	
Br(2)-Bi(1)-Br(1)	92.518(17)	$Br(3)-Bi(1)-Br(4)^{ii}$	79.942(17)	
Br(2)-Bi(1)-Br(4)	95.30(2)	$Br(3)^{i}-Bi(1)-Br(4)^{ii}$	94.030(18)	
Br(1)-Bi(1)-Br(4)	87.720(18)	$Bi(1)-Br(4)-Bi(1)^{i}$	99.973(17)	
Br(2)-Bi(1)-Br(3)	87.87(2)	$Bi(1)-Br(3)-Bi(1)^{ii}$	96.108(16)	
Br(1)-Bi(1)-Br(3)	89.449(18)			
	210 K -	- phase III		
Bi(1)-Br(5)	2.6549(8)	Br(5)-Bi(1)-Br(3)	166.224(18)	
Bi(1)-Br(6)	2.6937(8)	Br(6)-Bi(1)-Br(3)	88.44(2)	
$Bi(1)$ - $Br(2)^{iii}$	2.8313(8)	$Br(2)^{iii}-Bi(1)-Br(3)$	100.31(2)	
Bi(1)-Br(1)	2.9510(8)	Br(1)-Bi(1)-Br(3)	79.28(2)	
Bi(1)-Br(4) ⁱⁱⁱ	3.0905(8)	$Br(4)^{iii}$ -Bi(1)-Br(3)	94.36(2)	
Bi(1)-Br(3)	3.1471(8)	Br(7)-Bi(2)-Br(8)	92.84(2)	
Bi(2)-Br(7)	2.6448(8)	Br(7)-Bi(2)-Br(3)	87.77(2)	
Bi(2)-Br(8)	2.6536(8)	Br(8)-Bi(2)-Br(3)	96.11(2)	
Bi(2)-Br(3)	2.7554(8)	Br(7)-Bi(2)-Br(4)	88.77(2)	
Bi(2)-Br(4)	3.0565(8)	Br(8)- $Bi(2)$ - $Br(4)$	89.76(2)	
Bi(2)-Br(2)	3.1574(8)	Br(3)-Bi(2)-Br(4)	173.33(2)	
Bi(2)-Br(1)	3.1812(8)	Br(7)-Bi(2)-Br(2)	91.51(2)	
$Br(2)-Bi(1)^{iv}$	2.8313(8)	Br(8)-Bi(2)-Br(2)	168.402(18)	
$Br(4)-Bi(1)^{iv}$	3.0905(8)	Br(3)-Bi(2)-Br(2)	94.80(2)	
Br(5)-Bi(1)-Br(6)	92.41(2)	Br(4)-Bi(2)-Br(2)	79.59(2)	
$Br(5)-Bi(1)-Br(2)^{iii}$	93.46(2)	Br(7)-Bi(2)-Br(1)	168.474(19)	
$Br(6)-Bi(1)-Br(2)^{iii}$	88.20(2)	Br(8)-Bi(2)-Br(1)	83.85(2)	
Br(5)-Bi(1)-Br(1)	86.97(2)	Br(3)-Bi(2)-Br(1)	81.63(2)	
Br(6)-Bi(1)-Br(1)	89.72(2)	Br(4)-Bi(2)-Br(1)	102.23(2)	
$Br(2)^{iii}-Bi(1)-Br(1)$	177.89(2)	Br(2)-Bi(2)-Br(1)	93.86(2)	

Br(5)- $Bi(1)$ - $Br(4)$ ⁱⁱⁱ	86.57(2)	Bi(1)-Br(1)-Bi(2)	96.66(2)
$Br(6)$ - $Bi(1)$ - $Br(4)^{iii}$	172.337(19)	$Bi(1)^{iv}-Br(2)-Bi(2)$	99.43(2)
$Br(2)^{iii}$ - $Bi(1)$ - $Br(4)^{iii}$	84.28(2)	Bi(2)-Br(3)-Bi(1)	101.67(2)
Br(1)- $Bi(1)$ - $Br(4)$ ⁱⁱⁱ	97.80(2)	Bi(2)-Br(4)-Bi(1) ^{<i>iv</i>}	96.14(2)

Symmetry codes: (*i*) *x*, -*y*+1/2, *z*+1/2; (*ii*) *x*, -*y*+1/2, *z*-1/2; (*iii*) *x*, *y*, *z*+1; (iv) *x*, *y*, *z*-1.

Figure S3. Variations of lattice parameters, presented in triclinic symmetry, of [morph]BiBr₄.

4 Vibrational characteristics of [morph]BiBr₄, [morph]SbCl₄ and [morph]SbBr₄

Figure S4. Infrared spectra of powdered [morph]BiBr₄ in Nujol (258, 300 and 373 K) and Fluorolube (300 K), and infrared spectra of [morph]SbCl₄ and [morph]SbBr₄. * - Nujol bands.

Figure S5. Evolution of IR spectra of $[morph]BiBr_4$ and temperature dependance of position of the selected bands arising from v(NH₂) vibrations. * - Nujol bands.

Figure S6. Evolution of IR spectra of $[morph]BiBr_4$ and temperature dependance of position of the selected bands arising from deformation vibrations of CH₂ groups (δ , ω) and wagging vibrations of NH₂ group. * - Nujol bands.

Figure S7. Evolution of IR spectra of $[morph]BiBr_4$ and temperature dependance of position of the selected bands arising from twisting vibrations of CH₂ groups and v(C-N) vibrations.

Figure S8. Evolution of IR spectra of $[morph]BiBr_4$ and temperature dependance of position of the selected bands arising from rocking vibrations of NH2 group and v(C-N), v(C-O) vibrations.

Figure S9. Evolution of IR spectra of [morph]BiBr₄ and temperature dependance of position of the selected bands arising from rocking vibrations of CH₂ groups and v(C-C) vibrations.

Figure S10. Evolution of IR spectra of $[morph]BiBr_4$ and temperature dependance of position of the selected bands arising from v(C-O) vibrations.

Table S3. Position (cm^{-1}) , relative intensities and tentative assignments of the bands observed in the IR spectra of [*morph*]BiBr₄ at 258, 300 and 373 K. The tantative assignments were based on a IR spectrum of morpholine [1] and similar heterocyclic compounds [2-5], as well as on experimental and theoretical data obtained for morpholinium tetrafluoroborate [6]. The assignments of the (NH₂) group were made taking into account results reported for protonated secondary amines [7].

$v_{\rm IR} [\rm cm^{-1}]$			Tentative assignments	
353 K	300 K	258 K		
3177(w)	3177(vw)	3178(w)		
3047(s)	3044(s)	3064(s)		
		3044(s)	$v(NH_2)$ or N-HBr	
		3011(m)		
3001(s)	3004*(m)	3003(s)		
	2990*(sh)			
	2980*(m)			
	2961*(m)		$V(CH_2)$	
	2941*(w)			
	2923*(m)			

	2896*(w)			
	2867*(w)			
	2839*(sh)			
2823(w)	2823*(m)			
2760(vw)		2757(vw)		
2752(vw)	2752*(m)			
2730(vw)	2732*(w)	2730(vw)		
2712(vw)	2713*(w)	2720(vw)		
2635(vw)	2635*(w)	2636(vw)		
2617(vw)	2620*(vw)	2622(vw)		
		2614(vw)		
2605(vw)	2605*(vw)		1 1 1	
()	2574*(vw)		combination bands	
	2527*(vw)			
2466(vw)	2470*(w)	2473(vw)		
2447(vw)	2447*(w)	2448(vw)		
1589(s)	1590(s)	1594(m)		
		1589(m)	$\delta_{\text{sciss}}(\text{NH}_2)$	
	1458*(s)			
		1446(sh)		
1443(m)	1443*(s)	1443(m)	$\delta(CH_2)$	
()		1439(sh)		
1427(w)	1429*(m)	1432(sh)		
1418(sh)		1425(w)	$\omega(\mathrm{NH}_2)$	
1415(sh)	1416*(sh)	1415(vw)		
1405(vw)	1405(vw)	1405(vw)		
	1381*(w)		$\delta(CH_2)$	
1351(vw)	1351*(w)	1350(vw)	$\tau(NH_2)$	
1319(w)	1320(w)	1319(w)		
()		1313(sh)	$\omega(CH_2)$	
1309(w)	1310(w)	1310(w)		
1305(sh)	1305(w)	1305(w)		
1225(w)	1226(w)	1226(w)		
()		1224(sh)	v(C-N)	
1194(vw)	1194(vw)	1195(vw)		
		1192(vw)	$\tau(CH_2)$	
1092(vs)	1092(vs)	1092(vs)		
		1088(sh)	$\rho(NH_2)$	
1060(vw)	1061(vw)	1061(vw)		
1040(sh)	1040(w)	1041(w)		
1033(m)		1034(m)	v(C-O) and $v(C-N)$	
1030(sh)	1031(sh)	1031(sh)		
1015(vw)	1015(vw)	1015(vw)		
`, , , , , , , , , , , , , , , , ,		902(w)	- (CII)	
895(w)	897(w)	893(w)	$\rho(CH_2)$	
875(w)	876(w)	876(w)		
867(m)	868(m)	868(m)	v(C-C)	
856(vs)	856(vs)	857(vs)		
831(vw)	831(vw)	831(vw)		
816(vw)	816(w)	817(w)	v(C-O)	
811(sh)	811(vw)	811(vw)		
593(w)	593(w)	593(w)		
~ /	588(vw)	587(vw)	$\rho(CH_2)$	
	1.	1	1	

vs - very strong, v - strong, m - medium, w - weak, vw - very weak;

 ν – stretching, δ_{sciss} – scissoring, ω – wagging, τ – twisting, ρ - rocking; * obtained from the spectrum in Fluorolube

[morph]SbCl ₄	[<i>morph</i>]SbBr ₄	- Tontativo oggionmonta
v_{IR} [cm ⁻¹] 300 K	v_{IR} [cm ⁻¹] 300 K	Tentative assignments
3193(vw)	3179(vw)	
3063(m)	3056(w)	
3043(m)		
3028(m)		$v(NH_2)$ or N-HX
3010(sh)	3004(s)*	
2989(s)*	2982(s)*	
2968(s)*	2965(sh)*	
2937(sh)*	2934(sh)*	
2922(sh)*	2921(sh)*	
2898(m)*	2889(m)*	
2868(m)*	2865(m)*	
2845(m)*	2839(sh)*	
2831(s)*	2824(m)*	v(CH)
2794(sh)*	2799(sh)*	$V(C11_2)$
	2782(sh)*	
2767(w)	2763(vw)	
	2755(vw)	
2721(w)	2727(vw)	
	2714(vw)	
2677(vw)		
2646(w)	2638(vw)	
2628(sh)		
	2619(sh)	
	2603(sh)	combination bands
2494(w)		
2480(sh)	2479(w)	
2468(vw)	• • • • • • • • • •	
2458(vw)	2450(vw)	
1599(s)	1592(s)	$\delta_{\text{sciss}}(\text{NH}_2)$
1457(s)*	1457(s)*	
1452(s)*	1.4.40 ().*	$\delta(CH_2)$
<u>144/(s)*</u>	1443(s)*	
1435(m)*	1428(s)*	$\omega(\rm NH_2)$
1422(m)*	<u>1417(m)*</u>	
1405(m)*	1404(m)*	$\delta(CH_2)$
13/8(w)*	13/8(w)*	
<u>1353(w)*</u>	1351(w)*	$\tau(\mathrm{NH}_2)$
1319(w)	1317(w)	
1313(m)	1310(m)	$\omega(CH_2)$
1306(w)	1302(w)	
1232(w)	1227(w)	v(C-N)
1193(vw)	1191(vw)	$\tau(CH_2)$
	1181(vw)	
	1169(vw)	
	1150(vw)	
1094(vs)	1093(s)	$o(NH_2)$
1065(vw)	1062(vw)	P(11112)

Table S4. Position (cm⁻¹), relative intensities and tentative assignments of the bands observed in the IR spectra of [morph]SbCl4 and [morph]SbBr4 at 300 K. For abreviations of symbols see footnote of Table S4.

 1044(w)	1036(m)		
1044(w) 1035(m)	1030(m) 1032(m)	v(C-O) and $v(C-N)$	
1018(vw)	1018(vw)		
914(m)	907(s)	$\rho(CH_2)$	
 881(vw)	878(w)		
870(m)	867(s)	v(C-C)	
859(vs)	857(vs)		
 821(w)	818(w)	w(C D)	
815(vw)		V(C-O)	
 600(w)	595(w)	$\rho(CH_2)$	

5 Optical observations of [morph]BiBr₄

Observations of a ferroelastic domain structure were performed under OLYMPUS BX53 polarizing microscope.

Figure S11. The traces of ferroelastic domain structure of [morph]BiBr₄.

6 Dielectric properties of [morph]SbCl₄

The frequency dependence of complex electric permittivity $\varepsilon^* = \varepsilon' - i\varepsilon''$ of [*morph*]SbCl₄ was measured between 130 and 300 K with an Agilent 4980A Precision LCR Meter in the frequency range 100 Hz to 2 MHz along crystallographic *a* direction. The dimensions of the samples used in these measurements were approximately $4 \times 4 \times 1$ mm³. Silver graphite electrodes were painted onto opposite large faces. The overall error in electric permittivity measurements was less than 5%.

The dielectric response at low temperature was well described by the Cole-Cole relation:

$$\varepsilon^{*}(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_{o} - \varepsilon_{\infty}}{1 + (i\omega\tau)^{1-\alpha}}$$
(1)

The experimental Cole–Cole plots at several temperatures were fitted to Eq. (1) and the fitting parameters ε_0 , ε_∞ , α and τ were determined. In the systems characterized by weak dipole–

dipole interactions we can assume that the macroscopic relaxation time is equivalent to a microscopic one, thus the energy barrier E_a can be estimated from the Arrhenius relation for the macroscopic relaxation time:

 $\tau = C \exp\left(\frac{E_a}{kT}\right)$

Figure S12. Temperature dependence of the real and imaginary parts of of the complex electric permittivity obtained on cooling cycle.

Figure S13. Plots of relaxation times τ versus temperature and $\ln \tau$ versus reciprocal temperature for the high temperature (a) and low temperature relaxator (b).

References

[1] D. Vedal, O. H. Ellestad, P. Klaboe, Spectrochim. Acta, 1976, 32A, 877.

- [2] O. H. Ellestad, P. Klaboe, Spectrochim. Acta, 1973, 29A, 1247.
- [3] D. Vedal, O. H. Ellestad, P. Klaboe, Spectrochim. Acta, 1975, 31A, 339.
- [4] D. Vedal, O. H. Ellestad, P. Klaboe, Spectrochim. Acta, 1975, 31A, 355.
- [5] O. H. Ellestad, P. Klaboe, Spectrochim. Acta, 1971, 27A, 1025.

[6] M. Owczarek, R. Jakubas, G. Bator, A. Pawlukojć, J. Baran, J. Przesławski, W. Medycki, *Chem. Phys.*, 2011, **381**, 11.

[7] D. Cook, Can. J. Chem., 1964, 42, 2292.

(2)

Comment to the [morph]BiBr₄ structure determination at 210 K.

The phase transition from the phase II (belonging to the monoclinic symmetry) to the phase III (triclinic) is connected with the twinnig of the sample. In our experiment in the phase III dominated two types of domains. The domain I, which permitted indexing of 57% reflections, and the domain II to which 35% reflections belonged. The matrix of the transformation among these two domains is as follows: $-1 \ 0 \ 0 \ -1 \ -0.215 \ 0 \ 0 \ 1$. The structure was found for the collection of reflections of the domain I. Final refinement of the crystal structure was carried out using the collection of reflections of both types of domains. The figures S14 and S15 show the visualizations of Ewald sphere for the both types of reflections.

Figure S14. Domain I.

Figure S15. Domain II.