Electronic Supplementary Information

Squaring the cube: A Family of Octametallic Lanthanide Complexes Including a Dy8 Single-Molecule Magnet

Ming Fang,^{*a,b*} Hanhua Zhao,^{*a*} Andrey V. Prosvirin,^{*a*} Dawid Pinkowicz,^{*a,c*} Bin Zhao,^{*,*b*} Peng Cheng,^{*b*} Wolfgang Wernsdorfer^{*d*} and Euan K. Brechin,^{*,*e*} and Kim R. Dunbar,^{*,*a*}

^a Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA ^b Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, P. R. China ^c Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland ^d Institut Néel, CNRS and Université Joseph Fournier, BP 166, 25 Avenue des Martyrs, 38042 Grenoble Cadem 0, Erence

Cedex 9, France

EaStChem School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, Scotland, EH9 3JJ, UK

Electronic Supplementary Information Table of Contents:

Figure S1a. Asymmetric unit (top) and packing diagrams along c (middle) and a(bottom) crystallographic directions for compound 6. Dy_8 units highlighted in green.

Figure S1b. Coordination mode of the Sao²⁻ ligand in 1 - 8.

Table S1. Selected bond distances (Å) and angles (deg) for 1 - 8.

Table S2. Selected parameters obtained by fitting Cole-Cole plots of 6 with the Debye model.

Figure S2. Sweep rate dependence of the magnetic hysteresis in compound 6 (microSQUID data) at 0.5 K (top) and 30 mK (bottom).

Figure S2. Frequency dependence of the in-phase χ' (top) and out-of-phase χ'' (middle) *ac* susceptibilities and Cole-Cole plots (bottom) for **6** in H_{dc} = 1000 Oe.

Figure S3. Frequency dependence of the in-phase χ' (top) and out-of-phase χ'' (middle) *ac* susceptibilities and Cole-Cole plots (bottom) for **6** in H_{dc} = 2000 Oe.

Figure S4. Frequency dependence of the in-phase χ' (top) and out-of-phase χ'' (middle) *ac* susceptibilities and Cole-Cole plots (bottom) for **6** in H_{dc} = 3000 Oe.

Figure S5. Frequency dependence of the in-phase χ' (top) and out-of-phase χ'' (middle) *ac* susceptibilities and Cole-Cole plots (bottom) for **6** in H_{dc} = 4000 Oe

^k corresponding author email: dunbar@mail.chem.tamu.edu, zhaobin@nankai.edu.cn, ebrechin@staffmail.ed.ac.uk

Figure S1a. Asymmetric unit with labeling scheme (top) and packing diagrams along c (middle) and a (bottom) directions for compound **6**. Dy₈ units highlighted in green.

Figure S1b. Coordination mode of the Sao²⁻ ligand in 6 (1-8 is exacly the same).

Table S1. Selected bond distances (Å) and angles (deg) for 1 - 8.

	1				
Nd(1)-O(1)	2.379(5)	O(1)-Nd(1)-O(11)	85.3(2	O(11)-Nd(1)-O(10)#1	116.8(2)
Nd(1)-O(11)	2.408(8)	O(1)-Nd(1)-O(10)#1	146.73(17)	O(11)-Nd(1)-O(16)	72.2(3)
Nd(1)-O(10)#1	2.421(5)	O(1)-Nd(1)-O(16)	88.3(3)	O(11)-Nd(1)-O(10)	76.9(2)
Nd(1)-O(16)	2.442(10)	O(1)-Nd(1)-O(10)	142.28(17)	O(11)-Nd(1)-O(10)#2	141.6(2)
Nd(1)-O(10)	2.450(5)	O(1)-Nd(1)-O(10)#2	106.91(18)	O(11)-Nd(1)-O(26)	141.2(2)
Nd(1)-O(10)#2	2.450(5)	O(1)-Nd(1)-O(26)	67.51(17)	O(11)-Nd(1)-N(9)	76.4(3)
Nd(1)-O(26)	2.476(5)	O(1)-Nd(1)-N(9)	69.80(19)		
Nd(1)-N(9)	2.650(6)				
Nd(2)-O(1)	2.370(6)	O(1)-Nd(2)-O(21)	91.3(3)	O(21)-Nd(2)-O(26)	150.8(3)
Nd(2)-O(21)	2.400(11)	O(1)-Nd(2)-O(26)	68.78(18)	O(21)-Nd(2)-O(32)	72.1(4)
Nd(2)-O(26)	2.408(5)	O(1)-Nd(2)-O(32)	151.7(3)	O(21)-Nd(2)-O(38)	74.6(4)
Nd(2)-O(32)	2.540(11)	O(1)-Nd(2)-O(38)	78.5(3)	O(21)-Nd(2)-O(28)	123.4(3)
Nd(2)-O(38)	2.548(10)	O(1)-Nd(2)-O(28)	80.5(2)	O(21)-Nd(2)-O(33)	121.4(4)
Nd(2)-O(28)	2.562(7)	O(1)-Nd(2)-O(33)	144.8(3)	O(21)-Nd(2)-O(36)	86.4(4)
Nd(2)-O(33)	2.544(11)	O(1)-Nd(2)-O(36)	126.8(3)	O(21)-Nd(2)-O(29)	74.5(3)
Nd(2)-O(36)	2.554(10)	O(1)-Nd(2)-O(29)	78.6(3)		
Nd(2)-O(29)	2.568(9)	Nd(1)-O(10)-Nd(1)#3	104.62(19)		
Nd(1)-Nd(1)#2	3.8775(7)	Nd(1)#2-Nd(1)-Nd(1)#3	59.516(6)	Nd(1)#3-Nd(1)-Nd(2)	114.751(18)
Nd(1)-Nd(1)#3	3.8775(7)	Nd(1)#2-Nd(1)-Nd(1)#1	59.513(6)	Nd(1)#1-Nd(1)-Nd(2)	150.423(13)
Nd(1)-Nd(1)#1	3.9341(9)	Nd(1)#3-Nd(1)-Nd(1)#1	59.516(6)	Nd(1)#1-O(10)-Nd(1)	107.74(18)
Nd(1)-Nd(2)	3.9436(8)	Nd(1)#2-Nd(1)-Nd(2)	91.723(14)	Nd(1)#1-O(10)-Nd(1)#3	105.52(19)
2					
Sm(1)-O(10)	2.347(6)	O(10)-Sm(1)-O(15)	84.3(3)	O(15)-Sm(1)-O(38)	118.4(3)
Sm(1)-O(15)	2.387(15)	O(10)-Sm(1)-O(38)	145.3(2)	O(15)-Sm(1)-O(38)#1	141.2(3)
Sm(1)-O(38)	2.400(6)	O(10)-Sm(1)-O(38)#1	107.5(2)	O(15)-Sm(1)-O(25)	72.6(4)
Sm(1)-O(38)#1	2.414(6)	O(10)-Sm(1)-O(25)	87.6(3)	O(15)-Sm(1)-O(38)#2	77.2(3)
Sm(1)-O(25)	2.415(10)	O(10)-Sm(1)-O(38)#2	143.4(2)	O(15)-Sm(1)-O(9)	140.8(3)
Sm(1)-O(38)#2	2.431(6)	O(10)-Sm(1)-O(9)	67.1(2)	O(15)-Sm(1)-N(8)#1	75.6(3)
Sm(1)-O(9)	2.467(6)	O(10)-Sm(1)-N(8)#1	70.8(2)		
Sm(1)-N(8)#1	2.617(8)				

Sm(2)-O(10)	2.330(7)	O(10)-Sm(2)-O(20)	92.0(3)	O(20)-Sm(2)-O(9)	150.6(3)
Sm(2)-O(20)	2.384(11)	O(10)-Sm(2)-O(9)	68.8(2)	O(20)-Sm(2)-O(31)	72.0(4)
Sm(2)-O(9)	2.380(6)	O(10)-Sm(2)-O(31)	152.0(3)	O(20)-Sm(2)-O(28)	84.4(4)
Sm(2)-O(31)	2.505(12)	O(10)-Sm(2)-O(28)	126.0(3)	O(20)-Sm(2)-O(34)	123.8(4)
Sm(2)-O(28)	2.509(11)	O(10)-Sm(2)-O(34)	81.2(3)	O(20)-Sm(2)-O(27)	73.7(4)
Sm(2)-O(34)	2.525(10)	O(10)-Sm(2)-O(27)	78.1(3)	O(20)-Sm(2)-O(35)	74.5(4)
Sm(2)-O(27)	2.529(11)	O(10)-Sm(2)-O(35)	80.2(3)	O(20)-Sm(2)-O(30)	121.4(4)
Sm(2)-O(35)	2.534(10)	O(10)-Sm(2)-O(30)	144.6(3)		
Sm(2)-O(30)	2.523(12)	Sm(1)#3-O(38)-Sm(1)#2	104.7(2)		
Sm(1)-Sm(1)#1	3.8311(9)	Sm(1)#1-Sm(1)-Sm(1)#3	60.957(16)	Sm(1)#3-Sm(1)-Sm(2)	91.747(17)
Sm(1)-Sm(1)#3	3.8311(9)	Sm(1)#1-Sm(1)-Sm(1)#2	59.521(8)	Sm(1)#2-Sm(1)-Sm(2)	150.351(16)
Sm(1)-Sm(1)#2	3.8865(10)	Sm(1)#3-Sm(1)-Sm(1)#2	59.521(8)	Sm(1)-O(38)-Sm(1)#3	105.5(2)
Sm(1)-Sm(2)	3.8948(8)	Sm(1)#1-Sm(1)-Sm(2)	115.14(2)	Sm(1)-O(38)-Sm(1)#2	107.1(2)
		3			
Eu(2)-O(1)	2.338(6)	O(1)-Eu(2)-O(11)	84.2(2)	O(11)-Eu(2)-O(10)#1	118.1(3)
Eu(2)-O(11)	2.376(9)	O(1)-Eu(2)-O(10)#1	145.5(2)	O(11)-Eu(2)-O(10)#2	141.5(3)
Eu(2)-O(10)#1	2.386(6)	O(1)-Eu(2)-O(10)#2	107.8(2)	O(11)-Eu(2)-O(16)	72.5(4)
Eu(2)-O(10)#2	2.400(6)	O(1)-Eu(2)-O(16)	87.6(3)	O(11)-Eu(2)-O(10)	77.3(3)
Eu(2)-O(16)	2.399(10)	O(1)-Eu(2)-O(10)	143.4(2)	O(11)-Eu(2)-O(2)	140.7(3)
Eu(2)-O(10)	2.410(6)	O(1)-Eu(2)-O(2)	66.9(2)	O(11)-Eu(2)-N(9)#3	75.5(3)
Eu(2)-O(2)	2.451(7)	O(1)-Eu(2)-N(9)#3	70.7(2)		
Eu(2)-N(9)#3	2.594(8)				
Eu(1)-O(1)	2.321(7)	O(1)-Eu(1)-O(2)	68.6(2)	O(2)-Eu(1)-O(21)	150.0(3)
Eu(1)-O(2)	2.366(7)	O(1)-Eu(1)-O(21)	91.7(3)	O(2)-Eu(1)-O(30)	90.2(3)
Eu(1)-O(21)	2.375(11)	O(1)-Eu(1)-O(30)	126.3(3)	O(2)-Eu(1)-O(31)	81.0(3)
Eu(1)-O(30)	2.474(11)	O(1)-Eu(1)-O(31)	77.7(3)	O(2)-Eu(1)-O(26)	134.3(3)
Eu(1)-O(31)	2.504(11)	O(1)-Eu(1)-O(26)	152.1(3)	O(2)-Eu(1)-O(27)	83.3(3)
Eu(1)-O(26)	2.507(12)	O(1)-Eu(1)-O(27)	144.3(3)	O(2)-Eu(1)-O(34)	76.9(3)
Eu(1)-O(27)	2.505(13)	O(1)-Eu(1)-O(34)	81.8(3)	O(2)-Eu(1)-O(35)	120.6(3)
Eu(1)-O(34)	2.509(11)	O(1)-Eu(1)-O(35)	79.4(3)		
Eu(1)-O(35)	2.515(11)	Eu(2)#3-O(10)-Eu(2)	104.6(2)		
Eu(2)-Eu(2)#3	3.8052(8)	Eu(2)#3-Eu(2)-Eu(2)#2	61.040(15)	Eu(2)#2-Eu(2)-Eu(1)	91.846(16)
Eu(2)-Eu(2)#2	3.8052(8)	Eu(2)#3-Eu(2)-Eu(2)#1	59.480(7)	Eu(2)#1-Eu(2)-Eu(1)	150.460(16)
Eu(2)-Eu(2)#1	3.8648(10)	Eu(2)#2-Eu(2)-Eu(2)#1	59.480(7)	Eu(2)#1-O(10)-Eu(2)#3	105.3(2)
Eu(2)-Eu(1)	3.8778(8)	Eu(2)#3-Eu(2)-Eu(1)	115.08(2)	Eu(2)#1-O(10)-Eu(2)	107.4(2)
4					
Gd(1)-O(1)	2.338(6)	O(1)-Gd(1)-O(34)	83.9(3)	O(34)-Gd(1)-O(28)#1	118.0(3)
Gd(1)-O(34)	2.372(8)	O(1)-Gd(1)-O(28)#1	145.4(2)	O(34)-Gd(1)-O(28)#2	141.8(3)
Gd(1)-O(28)#1	2.388(6)	O(1)-Gd(1)-O(28)#2	107.9(2)	O(34)-Gd(1)-O(29)	72.3(4)
Gd(1)-O(28)#2	2.392(6)	O(1)-Gd(1)-O(29)	87.2(3)	O(34)-Gd(1)-O(28)	77.4(3)
Gd(1)-O(29)	2.393(9)	O(1)-Gd(1)-O(28)	143.38(19)	O(34)-Gd(1)-O(10)	140.0(3)
Gd(1)-O(28)	2.411(6)	O(1)-Gd(1)-O(10)	66.3(2)	O(34)-Gd(1)-N(9)	75.6(3)
Gd(1)-O(10)	2.445(6)	O(1)-Gd(1)-N(9)	70.8(2)		
Gd(1)-N(9)	2.602(7)				
Gd(2)-O(1)	2.320(6)	O(1)-Gd(2)-O(23)	91.8(2)	O(23)-Gd(2)-O(10)	149.9(3)
Gd(2)-O(23)	2.362(7)	O(1)-Gd(2)-O(10)	68.30(19)	O(23)-Gd(2)-O(16)	72.3(3)
Gd(2)-O(10)	2.344(6)	O(1)-Gd(2)-O(16)	150.9(3)	O(23)-Gd(2)-O(12)	83.0(3)
Gd(2)-O(16)	2.484(9)	O(1)-Gd(2)-O(12)	127.4(3)	O(23)-Gd(2)-O(19)	124.3(3)
Gd(2)-O(12)	2.471(9)	O(1)-Gd(2)-O(19)	82.1(2)	O(23)-Gd(2)-O(15)	121.8(3)

Gd(2)-O(19)	2.508(8)	O(1)-Gd(2)-O(15)	144.5(3)	O(23)-Gd(2)-O(11)	72.6(3)
Gd(2)-O(15)	2.499(10)	O(1)-Gd(2)-O(11)	78.1(3)	O(23)-Gd(2)-O(20)	74.4(3)
Gd(2)-O(11)	2.501(11)	O(1)-Gd(2)-O(20)	78.5(3)		
Gd(2)-O(20)	2.548(10)	Gd(1)#3-O(28)-Gd(1)	105.2(2)		
Gd(1)-Gd(1)#2	3.7975(12)	Gd(1)#2-Gd(1)-Gd(1)#3	61.17(2)	Gd(1)#3-Gd(1)-Gd(2)	115.11(3)
Gd(1)-Gd(1)#3	3.7974(12)	Gd(1)#2-Gd(1)-Gd(1)#1	59.417(10)	Gd(1)#1-Gd(1)-Gd(2)	150.510(15)
Gd(1)-Gd(1)#1	3.8641(12)	Gd(1)#3-Gd(1)-Gd(1)#1	59.418(11)	Gd(1)#1-O(28)-Gd(1)#3	104.50(2)
Gd(1)-Gd(2)	3.8754(11)	Gd(1)#2-Gd(1)-Gd(2)	91.92(2)	Gd(1)#1-O(28)-Gd(1)	107.2(2)
		5			
Tb(1)-O(1)	2.315(6)	O(1)-Tb(1)-O(14)	83.7(2)	O(14)-Tb(1)-O(3)	118.2(2)
Tb(1)-O(14)	2.340(7)	O(1)-Tb(1)-O(3)	145.0(2)	O(14)-Tb(1)-O(13)	71.6(3)
Tb(1)-O(3)	2.364(6)	O(1)-Tb(1)-O(13)	86.8(3)	O(14)-Tb(1)-O(3)#1	141.7(2)
Tb(1)-O(13)	2.366(8)	O(1)-Tb(1)-O(3)#1	108.1(2)	O(14)-Tb(1)-O(3)#2	77.4(2)
Tb(1)-O(3)#1	2.375(6)	O(1)-Tb(1)-O(3)#2	143.7(2)	O(14)-Tb(1)-O(2)	140.1(2)
Tb(1)-O(3)#2	2.393(6)	O(1)-Tb(1)-O(2)	66.7(2)	O(14)-Tb(1)-N(1)	75.9(2)
Tb(1)-O(2)	2.427(6)	O(1)-Tb(1)-N(1)	70.6(2)		
Tb(1)-N(1)	2.571(7)				
Tb(2)-O(1)	2.298(7)	O(1)-Tb(2)-O(15)	92.1(3)	O(15)-Tb(2)-O(2)	149.9(3)
Tb(2)-O(15)	2.317(11)	O(1)-Tb(2)-O(2)	68.5(2)	O(15)-Tb(2)-O(8)	72.6(4)
Tb(2)-O(2)	2.337(7)	O(1)-Tb(2)-O(8)	150.3(3)	O(15)-Tb(2)-O(4)	124.8(3)
Tb(2)-O(8)	2.441(9)	O(1)-Tb(2)-O(4)	82.6(2)	O(15)-Tb(2)-O(10)	81.8(4)
Tb(2)-O(4)	2.475(7)	O(1)-Tb(2)-O(10)	127.7(3)	O(15)-Tb(2)-O(7)	121.4(4)
Tb(2)-O(10)	2.461(9)	O(1)-Tb(2)-O(7)	144.9(3)	O(15)-Tb(2)-O(11)	73.7(3)
Tb(2)-O(7)	2.502(9)	O(1)-Tb(2)-O(11)	78.0(3)	O(15)-Tb(2)-O(5)	74.5(3)
Tb(2)-O(11)	2.499(9)	O(1)-Tb(2)-O(5)	78.0(3)		
Tb(2)-O(5)	2.531(9)	Tb(1)#3-O(3)-Tb(1)#2	104.2(2)		
Tb(1)-Tb(1)#3	3.7627(11)	Tb(1)#3-Tb(1)-Tb(1)#1	61.119(19)	Tb(1)#1-Tb(1)-Tb(2)	115.22(3)
Tb(1)-Tb(1)#1	3.7626(11)	Tb(1)#3-Tb(1)-Tb(1)#2	59.438(10)	Tb(1)#2-Tb(1)-Tb(2)	150.475(17)
Tb(1)-Tb(1)#2	3.8262(11)	Tb(1)#1-Tb(1)-Tb(1)#2	59.440(9)	Tb(1)-O(3)-Tb(1)#3	105.1(2)
Tb(1)-Tb(2)	3.8364(10)	Tb(1)#3-Tb(1)-Tb(2)	91.912(19)	Tb(1)-O(3)-Tb(1)#2	107.1(2)
		6		·	
Dy(1)-O(1)	2.303(7)	O(1)-Dy(1)-O(11)	83.4(4)	O(11)-Dy(1)-O(10)	117.4(3)
Dy(1)-O(11)	2.330(11)	O(1)-Dy(1)-O(10)	145.1(3)	O(11)-Dy(1)-O(10)#1	142.2(3)
Dy(1)-O(10)	2.345(7)	O(1)-Dy(1)-O(10)#1	108.5(3)	O(11)-Dy(1)-O(16)	72.2(5)
Dy(1)-O(10)#1	2.367(7)	O(1)-Dy(1)-O(16)	86.6(4)	O(11)-Dy(1)-O(10)#2	77.3(4)
Dy(1)-O(16)	2.367(12)	O(1)-Dy(1)-O(10)#2	143.6(2)	O(11)-Dy(1)-O(3)	139.9(4)
Dy(1)-O(10)#2	2.384(7)	O(1)-Dy(1)-O(3)	66.5(3)	O(11)-Dy(1)-N(9)	75.8(4)
Dy(1)-O(3)	2.411(8)	O(1)-Dy(1)-N(9)	71.1(3)		
Dy(1)-N(9)	2.546(8)				
Dy(2)-O(1)	2.296(8)	O(1)-Dy(2)-O(3)	68.3(2)	O(3)-Dy(2)-O(21)	149.8(4)
Dy(2)-O(3)	2.311(8)	O(1)-Dy(2)-O(21)	91.4(4)	O(3)-Dy(2)-O(30)	134.4(4)
Dy(2)-O(21)	2.326(12)	O(1)-Dy(2)-O(30)	151.1(4)	O(3)-Dy(2)-O(34)	92.0(4)
Dy(2)-O(30)	2.426(13)	O(1)-Dy(2)-O(34)	126.9(3)	O(3)-Dy(2)-O(27)	77.5(3)
Dy(2)-O(34)	2.422(11)	O(1)-Dy(2)-O(27)	82.9(3)	O(3)-Dy(2)-O(31)	83.3(3)
Dy(2)-O(27)	2.471(9)	O(1)-Dy(2)-O(31)	144.5(3)	O(3)-Dy(2)-O(35)	81.0(3)
Dy(2)-O(31)	2.472(9)	O(1)-Dy(2)-O(35)	77.4(3)	O(3)-Dy(2)-O(26)	121.0(3)
Dy(2)-O(35)	2.480(11)	O(1)-Dy(2)-O(26)	78.5(3)		
Dy(2)-O(26)	2.522(11)	Dy(1)#3-O(10)-Dy(1)#2	103.7(2)		
Dy(1)-Dy(1)#3	3.7354(18)	Dy(1)#3-Dy(1)-Dy(1)#1	61.24(3)	Dy(1)#1-Dy(1)-Dy(2)	114.95(4)

	1	1			
Dy(1)-Dy(1)#1	3.7354(18)	Dy(1)#3-Dy(1)-Dy(1)#2	59.381(17)	Dy(1)#2-Dy(1)-Dy(2)	150.74(2)
Dy(1)-Dy(1)#2	3.8052(18)	Dy(1)#1-Dy(1)-Dy(1)#2	59.380(17)	Dy(1)-O(10)-Dy(1)#3	104.9(3)
Dy(1)-Dy(2)	3.8162(16)	Dy(1)#3-Dy(1)-Dy(2)	92.11(3)	Dy(1)-O(10)-Dy(1)#2	107.1(3)
	1	7	•		- <u>-</u>
Ho(1)-O(1)	2.303(7)	O(1)-Ho(1)-O(33)	83.4(4)	O(33)-Ho(1)-O(38)#1	142.3(4)
Ho(1)-O(33)	2.313(11)	O(1)-Ho(1)-O(38)#1	109.2(3)	O(33)-Ho(1)-O(38)#2	117.7(4)
Ho(1)-O(38)#1	2.334(8)	O(1)-Ho(1)-O(38)#2	145.1(3)	O(33)-Ho(1)-O(28)	72.1(5)
Ho(1)-O(38)#2	2.338(8)	O(1)-Ho(1)-O(28)	86.3(4)	O(33)-Ho(1)-O(38)	77.9(4)
Ho(1)-O(28)	2.364(13)	O(1)-Ho(1)-O(38)	144.0(3)	O(33)-Ho(1)-O(10)	139.7(4)
Ho(1)-O(38)	2.372(8)	O(1)-Ho(1)-O(10)	66.2(3)	O(33)-Ho(1)-N(9)	76.2(4)
Ho(1)-O(10)	2.397(8)	O(1)-Ho(1)-N(9)	71.2(3)		
Ho(1)-N(9)	2.555(10)				
Ho(2)-O(1)	2.281(8)	O(1)-Ho(2)-O(23)	91.8(4)	O(23)-Ho(2)-O(10)	149.6(5)
Ho(2)-O(23)	2.306(12)	O(1)-Ho(2)-O(10)	68.1(3)	O(23)-Ho(2)-O(16)	73.7(5)
Ho(2)-O(10)	2.303(8)	O(1)-Ho(2)-O(16)	150.0(4)	O(23)-Ho(2)-O(11)	124.4(5)
Ho(2)-O(16)	2.431(13)	O(1)-Ho(2)-O(11)	83.3(3)	O(23)-Ho(2)-O(20)	81.8(5)
Ho(2)-O(11)	2.451(11)	O(1)-Ho(2)-O(20)	127.0(4)	O(23)-Ho(2)-O(19)	72.0(5)
Ho(2)-O(20)	2.447(13)	O(1)-Ho(2)-O(19)	77.3(3)	O(23)-Ho(2)-O(15)	123.2(5)
Ho(2)-O(19)	2.460(12)	O(1)-Ho(2)-O(15)	143.5(4)	O(23)-Ho(2)-O(12)	73.8(5)
Ho(2)-O(15)	2.473(10)	O(1)-Ho(2)-O(12)	78.0(4)		
Ho(2)-O(12)	2.521(11)	Ho(1)#3-O(38)-Ho(1)	104.5(3)		
Ho(1)-Ho(1)#3	3.7215(9)	Ho(1)#3-Ho(1)-Ho(1)#2	59.340(9)	Ho(1)#2-Ho(1)-Ho(2)	150.924(19)
Ho(1)-Ho(1)#2	3.7956(10)	Ho(1)#3-Ho(1)-Ho(1)#1	59.340(9)	Ho(1)#1-Ho(1)-Ho(2)	92.337(19)
Ho(1)-Ho(1)#1	3.7215(9)	Ho(1)#2-Ho(1)-Ho(1)#1	59.341(9)	Ho(1)#2-O(38)-Ho(1)#3	105.5(3)
Ho(1)-Ho(2)	3.8058(8)	Ho(1)#3-Ho(1)-Ho(2)	115.13(2)	Ho(1)#2-O(38)-Ho(1)	107.4(3)
Er(1)-O(3)	2.308(7)	O(3)-Er(1)-O(14)	83.8(4)	O(14)-Er(1)-O(13)	117.0(3)
Er(1)-O(14)	2.336(11)	O(3)-Er(1)-O(13)	145.2(2)	O(14)-Er(1)-O(13)#1	142.8(3)
Er(1)-O(13)	2.336(7)	O(3)-Er(1)-O(13)#1	108.8(2)	O(14)-Er(1)-O(19)	71.9(5)
Er(1)-O(13)#1	2.337(7)	O(3)-Er(1)-O(19)	86.2(4)	O(14)-Er(1)-O(13)#2	77.5(3)
Er(1)-O(19)	2.354(13)	O(3)-Er(1)-O(13)#2	143.7(2)	O(14)-Er(1)-O(12)	139.9(3)
Er(1)-O(13)#2	2.356(7)	O(3)-Er(1)-O(12)	66.3(2)	O(14)-Er(1)-N(11)	76.4(4)
Er(1)-O(12)	2.383(7)	O(3)-Er(1)-N(11)	71.1(3)		
Er(1)-N(11)	2.524(9)				
Er(2)-O(3)	2.260(7)	O(3)-Er(2)-O(24)	91.0(4)	O(24)-Er(2)-O(12)	148.8(4)
Er(2)-O(24)	2.295(14)	O(3)-Er(2)-O(12)	68.3(3)	O(24)-Er(2)-O(38)	80.8(5)
Er(2)-O(12)	2.309(8)	O(3)-Er(2)-O(38)	126.9(4)	O(24)-Er(2)-O(34)	74.5(5)
Er(2)-O(38)	2.397(11)	O(3)-Er(2)-O(34)	149.9(4)	O(24)-Er(2)-O(40)	71.6(5)
Er(2)-O(34)	2.419(14)	O(3)-Er(2)-O(40)	77.6(3)	O(24)-Er(2)-O(31)	124.5(5)
Er(2)-O(40)	2.459(11)	O(3)-Er(2)-O(31)	83.9(3)	O(24)-Er(2)-O(35)	123.5(5)
Er(2)-O(31)	2.467(9)	O(3)-Er(2)-O(35)	144.2(4)	O(24)-Er(2)-O(30)	73.7(5)
Er(2)-O(35)	2.471(14)	O(3)-Er(2)-O(30)	77.9(4)		
Er(2)-O(30)	2.480(11)	Er(1)#3-O(13)-Er(1)#2	104.3(3)		
Er(1)-Er(1)#3	3.7066(10)	Er(1)#3-Er(1)-Er(1)#1	61.255(19)	Er(1)#1-Er(1)-Er(2)	114.89(3)
Er(1)-Er(1)#1	3.7067(10)	Er(1)#3-Er(1)-Er(1)#2	59.372(9)	Er(1)#2-Er(1)-Er(2)	151.06(2)
Er(1)-Er(1)#2	3.7769(12)	Er(1)#1-Er(1)-Er(1)#2	59.371(9)	Er(1)-O(13)-Er(1)#3	105.0(3)
Er(1)-Er(2)	3.7914(10)	Er(1)#3-Er(1)-Er(2)	92.39(2)	Er(1)-O(13)-Er(1)#2	107.2(3)
/	× · /	· · · · · · · · · · · · · · · · · · ·	、 /	$\sim / \sim / \sim /$	

<i>T /</i> K	τ / s	α
1.8	0.003371	0.226
1.9	0.003829	0.230
2.0	0.004406	0.235
2.1	0.005048	0.240

 Table S2. Selected parameters obtained by fitting Cole-Cole plots for 6 with the Debye model.

Figure S2. Sweep rate dependence of the magnetic hysteresis in compound 6 (microSQUID data) at 0.5 K (top) and 30 mK (bottom).

Figure S4. Frequency dependence of the in-phase χ' (top) and out-of-phase χ'' (middle) *ac* susceptibilities and Cole-Cole plots (bottom) for **6** in H_{dc} = 2000 Oe.

Figure S5. Frequency dependence of the in-phase χ' (top) and out-of-phase χ'' (middle) *ac* susceptibilities and Cole-Cole plots (bottom) for **6** in H_{dc} = 3000 Oe.

Figure S6. Frequency dependence of the in-phase χ' (top) and out-of-phase χ'' (middle) *ac* susceptibilities and Cole-Cole plots (bottom) for **6** in H_{dc} = 4000 Oe.

