Stacking of metal chelating rings with π-systems in mononuclear complexes of copper(II) with 3,6-dichloro-2,5-dihydroxy-1,4benzoquinone (chloranilic acid) and 2,2'-bipyridine ligands

Supplement

Krešimir Molčanov, Marijana Jurić, Biserka Kojić-Prodić Rudjer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia

- S1 Crystallographic details
- S2 IR spectra
- S3 Additional data on the compound 1b

Figure S1 ORTEP-3 drawing of the complex [Cu(CA)(bpy)] (1b). Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S2 ORTEP-3 drawing of a complex $[Cu(CA)(bpy)_2]$ from the dihydrate 4. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S3 ORTEP-3 drawing the uncoordinated bipy molecule from 3. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii. The crystallographic inversion centre is located at the midpoint of the C31-C31ⁱ bond.

Figure S4 ORTEP-3 drawing the uncoordinated bipy molecule from 4. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii. The crystallographic inversion centre is located at the midpoint of the C31-C31ⁱ bond.

	<i>D</i> –H / Å	H…A / Å	$D \cdots A / \text{\AA}$	$D-\mathrm{H}\cdots A / \circ$	Symm. op. on A
1b					
С9–Н9…ОЗ	0.93	2.49	3.169(4)	130	-1/2+x, -1/2+y, z
С10-Н10…О4	0.93	2.39	3.320(4)	176	-1/2+x, -1/2+y, z
С13-Н13…О4	0.93	2.54	3.462(4)	173	-1/2+x, -1/2+y, z
С7–Н7…О2	0.93	2.56	3.063(4)	115	<i>x</i> , <i>y</i> , <i>z</i>
C16-H16…O1	0.93	2.55	3.056(4)	114	<i>x</i> , <i>y</i> , <i>z</i>
3					
С7-Н7…О1	0.93	2.52	3.031(6)	115	<i>x</i> , <i>y</i> , <i>z</i>
С8–Н8…О4	0.93	2.48	3.093(8)	124	-x, 1-y, 1-z
С10-Н10…О2	0.93	2.44	3.334(7)	161	- <i>x</i> , 1- <i>y</i> , - <i>z</i>
С23-Н23…О5	0.93	2.38	3.205(9)	147	1+ <i>x</i> , 1+ <i>y</i> , – <i>z</i>
C26–H26…O2	0.93	2.46	3.123(8)	128	<i>x</i> , <i>y</i> , <i>z</i>
4					
С7–Н7…О2	0.93	2.48	3.037(10)	118	<i>x</i> , <i>y</i> , <i>z</i>
С9–Н9…Об	0.93	2.46	3.146(12)	131	1+ <i>x</i> , <i>y</i> , <i>z</i>
C14–H14…O5	0.93	2.39	3.147(14)	142	-1+x, 1+y, z
C15-H15…O6	0.93	2.59	3.406(12)	147	<i>x</i> , <i>y</i> , <i>z</i>
С23-Н23…О2	0.93	2.49	3.342(8)	153	1-x, -y, 1-z
С25-Н25…О5	0.93	2.59	3.433(12)	150	2– <i>x</i> , – <i>y</i> , <i>z</i>
С26-Н26…Об	0.93	2.58	3.401(10)	148	1– <i>x</i> , 1– <i>y</i> , – <i>z</i>

Table S1 Geometric parameters of C-H…O hydrogen bonds in 1b, 3 and 4.

Empirical formula $C_{16}H_8Cl_2CuN_2O_4$ Formula wt. / g mol ⁻¹ 426.68Crystal dimensions / mm0.22 x 0.15 x 0.11Space group $C 2/c$ $a / Å$ 25.0006(6) $b / Å$ 7.4597(2) $c / Å$ 17.2095(4) $a / °$ 90 $\beta / °$ 104.509(3) $\gamma / °$ 90 Z 8 $V / Å^3$ 3107.16(13) $D_{calc} / g cm^{-3}$ 1.824 u / mm^{-1} 5.395	Compound	<u>1b</u>
Formula wt. / g mol ⁻¹ 426.68 Crystal dimensions / mm $0.22 \times 0.15 \times 0.11$ Space group $C 2/c$ $a / Å$ $25.0006(6)$ $b / Å$ $7.4597(2)$ $c / Å$ $17.2095(4)$ $a / °$ 90 $\beta / °$ $104.509(3)$ $\gamma / °$ 90 Z 8 $V / Å^3$ $3107.16(13)$ $D_{calc} / g cm^{-3}$ 1.824	Empirical formula	$C_{16}H_8Cl_2CuN_2O_4$
Crystal dimensions / mm $0.22 \ge 0.15 \ge 0.11$ Space group $C 2/c$ $a / Å$ $25.0006(6)$ $b / Å$ $7.4597(2)$ $c / Å$ $17.2095(4)$ $a / °$ 90 $\beta / °$ $104.509(3)$ $\gamma / °$ 90 Z 8 $V / Å^3$ $3107.16(13)$ $D_{calc} / g cm^{-3}$ 1.824	Formula wt. / g mol ⁻¹	426.68
Space group $C 2/c$ $a / Å$ 25.0006(6) $b / Å$ 7.4597(2) $c / Å$ 17.2095(4) $a / °$ 90 $\beta / °$ 104.509(3) $\gamma / °$ 90 Z 8 $V / Å^3$ 3107.16(13) $D_{calc} / g cm^{-3}$ 1.824 w / mm^{-1} 5.395	Crystal dimensions / mm	0.22 x 0.15 x 0.11
$a / Å$ 25.0006(6) $b / Å$ 7.4597(2) $c / Å$ 17.2095(4) $a / °$ 90 $\beta / °$ 104.509(3) $\gamma / °$ 90 Z 8 $V / Å^3$ 3107.16(13) $D_{calc} / g cm^{-3}$ 1.824 w / mm^{-1} 5.395	Space group	C 2/c
$b / Å$ 7.4597(2) $c / Å$ 17.2095(4) $a / °$ 90 $\beta / °$ 104.509(3) $\gamma / °$ 90 Z 8 $V / Å^3$ 3107.16(13) $D_{calc} / g cm^{-3}$ 1.824 w / mr^{-1} 5.395	<i>a</i> / Å	25.0006(6)
$c / Å$ 17.2095(4) $a / °$ 90 $\beta / °$ 104.509(3) $\gamma / °$ 90 Z 8 $V / Å^3$ 3107.16(13) $D_{calc} / g cm^{-3}$ 1.824 u / mm^{-1} 5.395	b / Å	7.4597(2)
α / \circ 90 β / \circ 104.509(3) γ / \circ 90 Z 8 $V / Å^3$ 3107.16(13) $D_{calc} / g cm^{-3}$ 1.824 μ / mm^{-1} 5.395	<i>c</i> / Å	17.2095(4)
$ \begin{array}{cccccc} \beta / ^{\circ} & 104.509(3) \\ \gamma / ^{\circ} & 90 \\ Z & 8 \\ V / \text{Å}^{3} & 3107.16(13) \\ D_{\text{calc}} / \text{g cm}^{-3} & 1.824 \\ \mu / \text{mm}^{-1} & 5.395 \end{array} $	α / °	90
γ / \circ 90 Z 8 $V / Å^3$ 3107.16(13) $D_{calc} / g cm^{-3}$ 1.824 μ / mm^{-1} 5.395	β / °	104.509(3)
Z 8 $V / Å^3$ 3107.16(13) $D_{calc} / g cm^{-3}$ 1.824 u / mm^{-1} 5.395	y/°	90
$V/Å^3$ 3107.16(13) $D_{calc} / g cm^{-3}$ 1.824 u / mm^{-1} 5.395	Ż	8
$D_{\text{calc}} / \text{g cm}^{-3}$ 1.824 μ / mm^{-1} 5.395	$V/\text{\AA}^3$	3107.16(13)
u/mm^{-1} 5.395	$D_{\rm calc} / {\rm g cm}^{-3}$	1.824
u/11111 $J.JJJ$	μ/mm^{-1}	5.395
Θ range / ° 3.65 - 65.11	Θ range / °	3.65 - 65.11
<i>T</i> / K 293(2)	T/K	293(2)
Radiation vawelength 1.54179 (CuKa)	Radiation vawelength	1.54179 (CuKα)
Diffractometer type Xcalibur Nova	Diffractometer type	Xcalibur Nova
Range of <i>h</i> , <i>k</i> , <i>l</i> $-29 \le h \le 28$:	Range of h, k, l	-29 < h < 28:
-7 < k < 8:		-7 < k < 8:
-19 < l < 7		-19 < l < 7
Reflections collected 4763	Reflections collected	4763
Independent reflections 2430	Independent reflections	2430
Observed reflections 2129	Observed reflections	2129
$(I \ge 2\sigma)$	$(I \ge 2\sigma)$	
Absorption correction Multi-scan	Absorption correction	Multi-scan
R_{int} 0.0215	R _{int}	0.0215
R(F) = 0.0360	R(F)	0.0360
$R_{\rm vs}(F^2)$ 0.1057	$R_{\rm w}(F^2)$	0.1057
Goodness of fit 1 067	Goodness of fit	1 067
H atom treatment Constrained	H atom treatment	Constrained
No. of parameters 227	No. of parameters	227
No of restraints 0	No of restraints	0
$\Delta \rho_{max} = \Delta \rho_{min} (e Å^{-3}) = 0.811; -0.624$	$\Delta 0_{\text{max}}$ $\Delta 0_{\text{min}}$ (eÅ ⁻³)	0.811; -0.624

 Table S2 Crystallographic, data collection and refinement details of the structure 1b.

S2 IR spectra

IR data (KBr, cm^{-1}):

1a $\tilde{v} = 1643$ (m), 1629 (sh), 1605 (w), 1555 (s), 1538 (vs), 1521 (vs), 1474 (m), 1449 (m), 1366(s), 1318 (m), 1301 (sh), 1269 (w), 1256 (w), 1244 (w), 1174 (w), 1159 (m), 1124 (w), 1106 (w), 1073 (w), 1056 (w), 1037 (m), 1023 (w), 999 (m), 846 (s), 775 (m), 729 (m), 669 (w), 653 (w), 610 (w), 601 (sh), 569 (m), 445 (w), 417 (w).

1b $\tilde{v} = 1647$ (m), 1629 (w), 1605 (w), 1538 (s), 1523 (vs), 1514 (s), 1474 (m), 1448 (m), 1366 (s), 1317 (m), 1305 (m), 1268 (w), 1254 (w), 1167 (sh), 1123 (w), 1109 (w), 1074 (w), 1055 (w), 1036 (m), 1023 (w), 999 (m), 846 (s), 774 (m), 730 (m), 669 (w), 653 (w), 601 (m), 572 (m), 521 (w), 419 (w).

2 $\tilde{v} = 3423$ (m, br), 1647 (m), 1626 (w), 1605 (m), 1538 (s), 1523 (vs), 1513 (s), 1474 (m), 1448 (m), 1372 (s), 1317 (m), 1306 (sh), 1268 (w), 1254 (w), 1226 (sh), 1167 (w), 1159 (w), 1123 (w), 1108 (w), 1074 (w), 1055 (w), 1036 (m), 1023 (w), 1012 (m), 999 (m), 846 (s), 775 (m), 730 (m), 668 (w), 653 (m), 600 (m), 572 (m), 520 (w), 419 (w).

3 and 4 \tilde{v} = 3424 (m, br), 1648 (m), 1628 (w), 1605 (m), 1511 (vs), 1474 (m), 1448 (m), 1369 (s), 1317 (m), 1306 (sh), 1268 (w), 1253 (w), 1168 (w), 1158 (w), 1123 (w), 1108 (w), 1055 (w), 1036 (w), 1102 (w), 999 (w), 846 (s), 775 (m), 730 (m), 668 (w), 653 (w), 601 (m), 572 (m), 520 (w), 420 (w).

S3 Additional data on the compound 1b

Preparation of [Cu(CA)(bpy)] (1b). After mixing a methanol solution (4 mL) of CuCl₂·2H₂O (17.6 mg; 0.1 mmol) with a methanol solution (4 mL) of 2,2'-bipyridine (16.1 mg; 0.1 mmol), reaction mixture became cloudy and a green precipitate immediately formed. It was removed by filtration and the clear solution was carefully laid above an aqueous solution (5 mL) of H₂CA (21.1 mg; 0.1 mmol) into a test tube. Deep dark violet, almost black, prismatic single crystals with well-developed {100} planes were formed after few weeks. The yield was ~96%. According to the results of X-ray structure analysi, **1b** is identical to the previously reported structure of (2,2'-bipyridyl-κ²N,N')(chloranilato-κ²O,O')-copper(II)⁴⁸.

	10		
Cu1 - O1	1.921 (2)		
Cu1 - O2	1.920 (2)		
Cu1 - N1	1.950(2)		
Cu1 - N2	1.956 (2)		
O1 - Cu1 - O2	84.80 (9)		
O1 - Cu1 - N2	96.13(9)		
O1 - Cu1 - N1	177.4 7(10)		
O2 - Cu1 - N2	178.98 (10)		

Table S3 Geometry of the coordination sphere of Cu(II) in 1b (Å, °).

1h*

Table S4 Geometric parameters of the $\pi \cdots \pi$ interactions involving five-membered metal chelating rings and aromatic rings of the ligands in **1b**.

$\pi^{\dots}\pi$	$Cg^a{\cdots}Cg \ / \ \mathring{A}$	α^{b}	β^{c}	Cg…plane(Cg2) / Å	Offset / Å	Symm. op. on Cg2
Cu1→O2…Cu1→O2	3.4925(15)	0	19.65	3.2891(10)	1.174	1- <i>x</i> , 1- <i>y</i> , 2- <i>z</i>
Cu1→O2…C1→C6	3.9698(16)	1.77(13)	34.57	3.2854(10)	1.86 ^d	1- <i>x</i> , 1- <i>y</i> , 2- <i>z</i>
$Cu1 \rightarrow N2 \cdots C1 \rightarrow C6$	3.9358(16)	2.31(13)	31.34	3.3316(10)	1.73 ^d	1- <i>x</i> , - <i>y</i> , 2- <i>z</i>
$Cu1 \rightarrow N2 \cdots C1 \rightarrow C6$	3.6087(16)	2.31(13)	25.63	3.2002(10)	1,38 ^d	1- <i>x</i> , 1- <i>y</i> , 2- <i>z</i>
$N1 \rightarrow C11 \cdots C1 \rightarrow C6$	3.4230(17)	3.57(14)	8.43	3.4106(12)	0.50 ^d	1- <i>x</i> , - <i>y</i> , 2- <i>z</i>

^a Cg = centre of gravity of the interacting ring.

^b α = angle between planes of two interacting rings.

^c β = angle between Cg···Cg line and normal to the plane of the first interacting ring.

^d Offset can be calculated only for the strictly parallel rings ($\alpha = 0.00^\circ$). For slightly inclined rings ($\alpha \le \infty$)

3°) an approximate value is given.