Supporting Information for

Luminescent, Magnetic and Ferroelectric Properties of Noncentrosymmetric Chain-Like Complexes Composed of Nine-Coordinate Lanthanide Ions

Xi-Li Li,*^{*a*} Chun-Lai Chen,^{*a*} Hong-Ping Xiao,^{*b*} Ai-Ling Wang,^{*a*} Cai-Ming Liu,*^{*c*} Xianjun Zheng,^{*a*} Li-Jun Gao,^{*a*} Xiao-Gang Yang^{*a*} and Shao-Ming Fang*^{*a*}

^aHenan Provincial Key Laboratory of Surface and Interface Sciences, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China

^bSchool of Chemistry and Materials Engineering, Wenzhou University, Wenzhou

325027, P. R. China

^cBeijing National Laboratory for Molecular Sciences, Institution of Chemistry, Chinese Academy of Science, Center for Molecular Sciences, Beijing 100190, P. R. China

Fig. S1 The solid-state excitation spectrum for complexes 1 (a), 2 (b) and 3 (c) monitored by the respective emissions of ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ at room temperature.

Fig. S2 The solid-state luminescent lifetime measurements for complexes 1 (a), 2 (b)

and **3** (c) at room temperature.

Fig. S3 The plot of χ_m^{-1} vs. *T* for Dy³⁺ complex **4.** The red line represents the best theoretic fitting.

Fig. S4 The plot of *M* vs. *H* for complex 4 at 2 K.

Fig. S5 Temperature-dependence of ac susceptibilities of in-phase (top) and out-of-phase (bottom) for 4 at the indicated frequency under $H_{dc} = 0$ and $H_{ac} = 2.5$ Oe.

Fig. S6 AC susceptibilities measured at 250 Hz in a 2.5 Oe ac magnetic field with different dc-fields for **4**.

Fig. S7 The plot of $ln(\tau)$ vs.1/T under $H_{dc} = 2000$ Oe for 4 and the fitting results by

the Arrhénius law (red solid line).

Fig. S8. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **4** at 1.9 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S9. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **4** at 2.0 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S10. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **4** at 2.2 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S11. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **4** at 2.5 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S12. The simulative (black) and experimental (blue) powder X-ray diffraction patterns for **4**.

Complex 1								
Sm1-O1	2.377(6)	Sm1-O2	2.383(5)	Sm1-O3	2.403(5)			
Sm1-O4	2.407(5)	Sm1-O5	2.463(5)	Sm1-O6	2.372(5)			
Sm1-N2	2.682(6)	Sm1-N3	2.607(6)	Sm1-N1(A)	2.624(6)			
O6-Sm1-O1	95.03(19)	O1-Sm1-O3	132.98(18)	O3-Sm1-O4	67.86(18)			
O6-Sm1-N3	136.90(2)	N3-Sm1-N2	61.6(2)	N1(A)-Sm1-N2	144.45(17)			

Table S1. Selected bond lengths (Å) and angles (°) for 1–4.

Complex 2							
Eu1-O1	2.436(8)	Eu1-O2	2.339(6)	Eu1-O3	2.337(7)		
Eu1-O4	2.393(7)	Eu1-O5	2.473(8)	Eu1-O6	2.379(7)		
Eu1-N2	2.673(8)	Eu1-N3	2.627(8)	Eu1-N1(A)	2.657(8)		
06-Eu1-O1	93.7(3)	O1-Eu1-O3	134.3(2)	O3-Eu1-O4	67.2(2)		
O6-Eu1-N3	138.2(3)	N3-Eu1-N2	61.3(2)	N1(A)-Eu1-N2	143.3(2)		
Complex 3							
Tb1-O1	2.461(9)	Tb1-O2	2.289(7)	Tb1-O3	2.253(9)		
Tb1-O4	2.386(8)	Tb1-O5	2.460(10)	Tb1-O6	2.336(8)		
Tb1-N2	2.668(10)	Tb1-N3	2.585(10)	Tb1-N1(A)	2.596(9)		
O6-Tb1-O1	92.9(3)	O1-Tb1-O3	133.9(2)	O3-Tb1-O4	70.6(3)		
O6-Tb1-N3	137.3(3)	N3-Tb1-N2	62.2(3)	N1(A)-Tb1-N2	143.7(3)		
Complex 4							
Dy1-O1	2.578(7)	Dy1-O2	2.367(6)	Dy1-O3	2.278(6)		
Dy1-O4	2.342(6)	Dy1-O5	2.536(6)	Dy1-O6	2.302(6)		
Dy1-N2	2.697(6)	Dy1-N3	2.565(7)	Dy1-N1(A)	2.606(6)		
O6-Dy1-O1	91.4(2)	O1-Dy1-O3	133.50(19)	O3- Dy1-O4	72.1(2)		
O6-Dy1-N3	136.6(2)	N3-Dy1-N2	62.2(2)	N1(A)-Dy1-N2	143.8(2)		
Symmetry code: A x , $-y$, $0.5 + z$							

<i>T</i> (K)	$\chi_2(\text{cm}^3.\text{mol}^{-1})$	$\chi_1(\text{cm}^3.\text{mol}^{-1})$	$\chi_0(\mathrm{cm}^3.\mathrm{mol}^{-1})$	$\tau_1(s)$	α_1	$ au_2(s)$	α_2
1.9	4.52014	2.66445	0.13338	0.00103	0.183	0.04381	0.198
2.0	4.69748	2.89267	0.11685	0.00101	0.201	0.06211	0.128
2.2	4.51441	2.95578	0.12751	0.00091	0.179	0.05993	0.143
2.5	4.22166	3.06421	0.15662	0.00071	0.129	0.06905	0.144

Table S2. Relaxation Fitting Parameters from Least-Squares Fitting of $\chi(\omega)$ Data of 4.