Supporting Information

New Chemodosimetric Probe for the Specific Detection of Hg²⁺ in Physiological Condition and its Utilisation for Cell **Imaging Studies**

Sukdeb Saha,^{b,c} Hridesh Agarwalla,^{a,b} Horiom Gupta,^b Mithu Baidya,^d Sudip Kumar Ghosh^d* and Amitava Das^{a,b}*

^a CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune: 411008, Maharashtra, India; E-Mail: a.das@ncl.res.in

^b CSIR-Central Salt & Marine Chemicals Research Institute,Bhavnagar-364002, Gujarat, India

^c AcSIR-Central Salt & Marine Chemicals Research Institute,Bhavnagar-364002, Gujarat, India ^d Indian Institute Technology, Kharagapur, West Bengal-721302, India

	Contents	Page No
1.	¹ H NMR spectrum of L_1	2
2.	Mass spectrum of L_1	3
3.	FTIR spectrum of L ₁	4
4.	¹ H NMR spectra of L₂ in CD ₂ Cl ₂	5
5.	1H NMR spectra of L ₂ in DMF-d ₇	6
6.	¹³ C NMR spectra of L ₂	7
7.	ESI-MS spectra of L ₂	8
8.	FTIR Spectrum of L ₂	9
9.	ESI-Ms spectrum of L_2 in presence of Hg ²⁺	10
10.	Crystal data & Refinement parameters for compounds L_2	11
11.	Change in ¹ H NMR spectra of L_2 upon addition of Hg ²⁺ in CD ₃ CN	12
12.	2D-ROESY spectra of L_2 in presence of β -CD	13
13.	Time dependent spectrophotometry study of $\boldsymbol{L_2}$ in presence of Hg^{2^+}	14
14.	Hg ²⁺ concentration dependent plot of the absorption titration data of	L ₂ 15
15.	MTT assay for measuring cytotoxicity of L_2 to HeLa cells	16
16.	Recognition of Hg^{2^+} ions in presence of other metal ions by L_2	17
17.	Recognition of Hg^{2+} ions in presence of anions by L_2	18
18.	¹ H NMR spectra of L_2 in presence of Hg ²⁺ confirming disappearance –CH ₂ groups	e of 19

¹H NMR spectra of L₁ in CDCI₃:

SI Figure 1: ¹H NMR spectra of L₁ in CDCl₃.

ESI-MS spectra of L₁:

SI Figure 2: ESI-MS spectra of L1.

FTIR spectra of L₁ :

SI Figure 3: FTIR spectra of L1.

SI Figure 4: ¹H NMR spectra of L_2 in CD_2Cl_2 .

¹H NMR spectra of L₂ in DMF-d₇:

SI Figure 5: ¹H NMR spectra of L₂ in DMF-d₇.

Figure 6: ¹³C NMR spectra of L₂ in CDCl₃.

ESI-MS spectra of L₂:

SI Figure 7: ESI-MS spectra of L₂.

FTIR spectra of L₂:

SI Figure 8: FTIR spectra of L2.

Figure 9: ESI-Ms spectra of L_2 in presence of Hg²⁺ showing the reappearance of L_1 mass peak.

Crystal Data and Refinement Parameters for Compound L₂:

Table S1

Identification code	Compound1
Chemical formula	$C_{23}H_{25}BF_2N_2S_2$
Formula weight	442.38
Crystal Colour	orange
Crystal Size (mm)	0.23x0.10 x 0.04
Temperature (K)	150(2)
Crystal System	orthorhombic
Space Group	Pbca
a(Å)	12.572(3)
b(Å)	18.211(5)
C(Å)	19.677(5)
$\alpha(\circ)$	90
β(°)	90
γ (°)	90
Z	8
V(Å ³)	4505.1(19)
Density (Mg/m ³)	1.304
Absorption Coefficient(mm ⁻¹)	0.265
F(000)	1856
Reflections Collected	19526
Independent Reflections	3531
R _(int)	0.0940
Number of parameters	285
S(Goodness of Fit) on F ²	1.106
Final R1/wR2 (I>2o(I)	0.0974/ 0.1981
Weighted R1/wR2(all data)	0.1515/ 0.2235
CCDC Number	921458

Figure 10: A plot of change in ¹H NMR spectral pattern for the receptor (i) L_2 ; (ii) L_2 with 0.25 equivalents Hg²⁺; (iii) L_2 with 0.5 equivalents Hg²⁺ and (iv) L_2 with 1 equivalent Hg²⁺ in CD₃CN medium.

2D-ROESY NMR spectra for L₂ in presence of β -CD in DMF-d₇ solvent:

Figure 11: 2D-ROESY NMR showing interaction of Methyl protons (H_{21} , H_{22}) with aromatic protons and nearby protons (H_2 and H_{10}).

Time dependent spectrophotometry study of L_2 in presence of Hg²⁺:

Figure 12: Time dependent absorption spectra of L_2 (1.0 x 10⁻⁵ M) in presence of Hg²⁺ (2.8 x 10⁻⁵M) in Acetonitrile/ HEPES buffer medium (3:2, v/v, pH 7.1) over a period of 25 min showing instant conversion of L_2 into L_1 .

 Hg^{2+} Concentration dependent plot of the absorption titration data of L₂ in Acetonitrile/ HEPES buffer medium in presence of β -CD:

Figure 13: Change in absorption value of L_2 at 506 nm with changing the [Hg²⁺].

MTT Assay for the measuring of the Cytotoxicity of Chemodosimeter L_2 to HeLa cells:

Cytotoxicity of L₂ on HeLa cells was determined by conventional MTT assay (J. Natl. Cancer Inst., 1990, 8, 1113-1117). HeLa cells in their exponential growth phase were trypsinised and seeded in 96-well flat-bottom culture plates at a density of 3 x 10³ cells per well in 100 µl DMEM complete medium (Himedia, India). The cells were allowed to adhere and grow for 24 hr at 37 °C in CO₂ incubator (New Brunswick Scientific, U.S.A.), and then the medium was replaced with 100 µl fresh incomplete medium containing various concentrations of L_1 (0 to 5 μ M). The assay was performed in quadruplet for each concentration. Cells were then incubated for 6h, after which the culture medium was removed, and 100 µl of 1 mg/ml MTT reagent in PBS was added to each well. Thereafter, it was incubated for 4 hrs; during this period active mitochondria of viable cells reduce MTT to purple formazan. Unreduced MTT were then discarded and DMSO (100 µl) was added into each well to dissolve the formazan precipitate, which was then measured spectrophotometrically using a microplate reader at 570 nm. The cytotoxic effect of each treatment was expressed as percentage of cell viability relative to the untreated control cells. [MTT= (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole].

Recognition of Hg²⁺ ions in presence of other metal ions by L₂:

Figure 14: Recognition of Hg²⁺ ion (1.0 x 10⁻⁴ M) in presence of different metal (Mⁿ⁺ = 1.0 x 10⁻⁴ M) ions as their perchlorate salts by L₂ (1.1 x 10⁻⁵ M) in acetonitrile/HEPES (3:2, v/v) buffer medium (ΔA is the change in absorbances at λ_{abs} 490 nm).

Recognition of Hg²⁺ ions in presence of other anions by L₂:

Figure 15: Recognition of Hg²⁺ ion (1.0 x 10⁻⁴ M) in presence of different anions (Xⁿ⁻ = 1.0 x 10⁻⁴ M) as their sodium salt by L₂ (1.1 x 10⁻⁵ M) in acetonitrile/ HEPES (3:2, v/v) buffer medium (ΔA is the change in absorbances at λ_{abs} 490 nm).

¹H NMR spectra of L_2 in presence and absence of Hg^{2+} ions related to disappearance of $-CH_2$ protons of dithiane group:

Figure 16: ¹H NMR spectra of L_2 in presence and absence of Hg^{2+} ions showing disappearance of $-CH_2$ protons of dithiane group in CD_3CN medium (Red circles for indicating the $-CH_2$ protons of dithiane moiety).