Electronic Supplementary Information

Strategically modified FRET based tri-color emissive rhodamine-pyrene conjugate as Al³⁺ selective colorimetric and fluorescence sensor for living cell imaging

Animesh Sahana,^a Arnab Banerjee,^a Sisir Lohar,^a Avishek Banik,^b Subhra Kanti Mukhopadhyay,^b Damir A. Safin,^{*c} Maria G. Babashkina,^c Michael Bolte,^d Yann Garcia^{*c} and Debasis Das^{*a}

^aDepartment of Chemistry, The University of Burdwan, 713104, Burdwan, West Bengal, India. Fax: (+91) 342 2530452; E-mail: ddas100in@yahoo.com

^bDepartment of Microbiology, The University of Burdwan, 713104, Burdwan, West Bengal, India.

^cInstitute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium. Fax: +32(0) 1047 2330; Tel: +32(0) 1047 2831; E-mail: damir.safin@ksu.ru, yann.garcia@uclouvain.be

^dInstitut für Anorganische Chemie J.-W.-Goethe-Universität, Frankfurt/Main, Germany.

Materials and methods. High-purity HEPES, rhodamine B, pyrene aldehyde, and ethylenediamine were purchased from Sigma Aldrich (India). Al(NO₃)₃·9H₂O was purchased from Merck (India). Solvents used were of spectroscopic grade. Other chemicals were of analytical reagent grade and had been used without further purification except when specified. Mili-Q Milipore \mathbb{R} 18.2 M Ω cm⁻¹ water was used throughout all the experiments. N-(rhodamine-B)lactam-ethylenediamine was prepared according to the literature mothod.¹ IR spectra in KBr were recorded on a JASCO FTIR-H20 spectrometer. ¹H NMR spectra in DMSO-d₆ were recorded with a Bruker Advance 300 MHz using tetramethylsilane as an internal standard. Absorption spectra were recorded with a JASCO V-570 spectrophotometer. Mass spectra were performed on a QTOF Micro YA 263 mass spectrometer in ES positive mode. All pH measurements were performed with Systronics digital pH meter (model 335). Fluorescence spectra were recorded with a Hitachi F-4500 spectrofluorimeter. Time-resolved fluorescence life time measurements were performed using a picosecond pulsed diode laser-based time-correlated single photon counting (TCSPC) spectrometer from IBH (UK) at $\lambda_{ex} = 375$ nm and MCP-PMT as a detector. Emission from the sample was collected at a right angle to the direction of the excitation beam maintaining magic angle polarization (54.71). The full width at half maximum (FWHM) of the instrument response function was 250 ps and the resolution was 28 ps per channel. The data were fitted to multi exponential functions after deconvolution of the instrument response function by an iterative reconvolution technique using the IBH DAS 6.2 data analysis software in which reduced w2 and weighted residuals serve as parameters for goodness of fit. Elemental analysis was performed using Perkin Elmer CHN-Analyzer.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

Imaging system. The imaging system is composed of an inverted fluorescence microscope (Leica DM 1000 LED), digital compact camera (Leica DFC 420C), and an image processor (Leica Application Suite v3.3.0). The microscope is equipped with a mercury 50 W lamp.

Preparation of cells. Pollen grains were obtained from freshly collected mature buds of *Allamanda puberula* (Aapocynaceae), a common ornamental plant with bell shaped bright yellow flower by crashing stamens on a sterile petriplate and suspending them in normal saline. After crashing the stamen, debrishes are removed by filtering through a thin layer of non absorbant cotton and the suspended pollens are collected by centrifugation at 5000 rpm for five minutes. The pollen pellet was then washed twice in normal saline and then incubated in a solution of $Al(NO_3)_3 \cdot 9H_2O$ (0.1 mg/mL) for 0.5 h at ambient temperature. After incubation they are again washed in normal saline as mentioned above and then photographed under various objectives using UV filter in a LEICA Fluorescence microscope in presence and absence of the ligand. Both Al^{3+} treated and untreated cells were stained with L and observed under fluorescence microscope.

UV-Vis and fluorescence titration. The path length of cells used for absorption and emission studies was 1 cm. For UV-vis and fluorescence titrations, stock solution of L was prepared (10 μ M) in EtOH: H₂O (4:1 v/v) HEPES (0.1 M) buffer. Working solutions of L and Al³⁺ were prepared from their respective stock solutions. Fluorescence measurements were performed using 5 nm × 5 nm slit width. Except time dependent spectra, all the fluorescence and absorbance spectra were taken after 0.5 h of mixing of Al³⁺ with L.

Quantum yield measurements. The fluorescence quantum yields were determined using Anthracene as a reference with a known ϕ_R value of 0.27 in EtOH.² The area of the emission spectrum was integrated using the software available in the instrument and the quantum yield was calculated according to the following equation:³ $\phi_S/\phi_R = [A_S/A_R] \times [(Abs)_R/(Abs)_S] \times [\eta_S^2/\eta_R^2],$

where ϕ_S and ϕ_R are the fluorescence quantum yield of the sample and reference, respectively; A_S and A_R are the area under the fluorescence spectra of the sample and the reference, respectively; $(Abs)_S$ and $(Abs)_R$ are the corresponding optical densities of the sample and the reference solution at the wavelength of excitation; η_S and η_R are the refractive index of the sample and reference, respectively.³

Job's plot from fluorescence experiment. A series of solutions, containing L and $Al(NO_3)_3 \cdot 9H_2O$ were prepared such that the total concentration of Al^{3+} and L remained constant (10 μ M) in all the sets. The mole fraction of L was varied from 0.1 to 0.9. The fluorescence intensity at 586 nm was plotted against the mole fraction of L in solution.

Synthesis of (*E*)-3',6'-bis(diethylamino)-2-(2-(pyren-4-ylmethyleneamino)ethyl)spiro[isoindoline-1,9'xanthen]-3-one (L). A portion of *N*-(rhodamine-B)lactam-ethylenediamine (1.0 g, 2.06 mmol) and pyrene-4-

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

carbaldehyde (0.4739 mg, 2.06 mmol) were dissolved in freshly distilled EtOH (30 mL). The reaction solution was refluxed for 24 h and stirred for another 2 h at room temperature to form yellow crystals. The crystals were filtrated, washed with ethanol three times. Yield: 91%. M. p. 242 °C (\pm 4°C). FTIR (Figure S24 in the Supporting Information), *v*: 1117 (COC), 1634 (C=N), 1684 (C=O) cm⁻¹. ¹H NMR, δ : 1.04 (t, ³*J*_{H,H} = 7.0 Hz, 12H, CH₃, Et), 3.26 (q, ³*J*_{H,H} = 7.0 Hz, 8H, CH₂, Et), 3.43 (t, ³*J*_{H,H} = 7.0 Hz, 2H, CH₂, NCH₂CH₂N), 3.57 (t, ³*J*_{H,H} = 7.0 Hz, 2H, CH₂, NCH₂CH₂N), 6.26–6.44 (m, 6H, C₆H₃), 6.99–7.11 (m, 1H, C₆H₄), 7.45–7.58 (m, 1H, C₆H₄), 7.78–7.88 (m, 1H, C₆H₄), 8.06–8.45 (m, 6H, pyrene), 8.93 (s, 1H, pyrene), 8.96 (s, 1H, CHN) ppm. QTOF-MS ES⁺, *m/z* (*I*%): 697.13 (100) [M + H]⁺, 719.14 (22) [M + Na]⁺. *Anal.* Calc. for C₄₇H₄₄N₄O₂ (696.89): C 81.00, H 6.36, N 8.04. Found: C 81.47, H 6.21, N 8.13%.

X-Ray crystallography. X-ray data of **L** were collected at 173(2) K on a STOE IPDS-II diffractometer with graphite-monochromatised Mo-K_a radiation generated by a fine-focus X-ray tube operated at 50 kV and 40 mA. The reflections of the images were indexed, integrated and scaled using the X-Area data reduction package.⁴ Data were corrected for absorption using the PLATON program.⁵ The structure was solved by a direct method using the SHELXS-97 program⁶ and refined first isotropically and then anisotropically using SHELXL-97.⁶ Hydrogen atoms were revealed from $\Delta \rho$ maps and those bonded to C were refined using appropriate riding models. The hydrogen atom bonded to N was freely refined. Figures were generated using the Mercury program.⁷ C₄₇H₄₄N₄O₂, $M_r = 696.86 \text{ g mol}^{-1}$, monolinic, space group C2/c, a = 23.9547(15), b = 8.7450(4), c = 36.317(2) Å, $\beta = 103.866(4)^\circ$, V = 7386.1(7) Å³, Z = 8, $\rho = 1.253$ g cm⁻³, μ (Mo-K α) = 0.077 mm⁻¹, reflections: 27422 collected, 6510 unique, $R_{int} = 0.1195$, $R_1(all) = 0.1306$, $wR_2(all) = 0.1970$.

CCDC 848216 contains the supplementary crystallographic data. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

References

- 1 J. S. Wu, I.-C. Hwang, K. S. Kim and J. S. Kim, Org Lett., 2007, 9, 907.
- 2 W. H. Melhuish J. Phys. Chem., 1961, 65, 229.
- 3 E. Austin, and M. Gouterman, *Bioinorg. Chem.*, 1978, 9, 281.
- 4 Stoe and Cie. X-AREA. Area-Detector Control and Integration Software. Stoe & Cie, Darmstadt, Germany, 2001.
- 5 A. L. Spek, Acta Crystallogr., 2009, **D65**, 148.
- 6 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
- 7 I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F.Macrae, P. McCabe, J. Pearson and R. Taylor, *Acta Crystallogr.*, 2002, **B58**, 389.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Fig. S1. Crystal structure and packing of L along the ∂a (top), ∂b (middle) and ∂c (bottom) axes (bottom; molecules are coloured by symmetry operation). H-atoms were omitted.

Fig. S2. Emission spectra of **L** (10 μ M) (blue), [**L** (10 μ M)–Al³⁺ (120 μ M)] after 2 min of mixing (green) and absorption spectrum of [**L** (10 μ M)–Al³⁺ (120 μ M)] after 30 min of mixing (red). The shaded area represents the overlap region of the emission and absorption of the [**L**–Al³⁺] system, $\lambda_{ex} = 400$ nm.

Fig. S3. Effect of pH on the emission intensity of L (10 μ M) and L (10 μ M) + Al³⁺ (100 μ M) (λ_{em} = 586 nm). All spectra were recorded after 30 min of mixing of L with Al³⁺, λ_{ex} = 400 nm.

Fig. S4. Time-dependent changes in the emission spectra of L (20 μ M) after addition of Al³⁺ (100 μ M) in HEPES buffer (0.1 M; EtOH:H₂O, 4:1 v/v; pH 7.4; $\lambda_{ex} = 400$ nm) (top). Plot of the emission intensities at 586 and 501 nm *vs.* time (bottom).

Fig. S5. Emission intensity of L (5 μ M) in the presence of Al³⁺ (100 μ M) as a function of time (from 0 to 0.5 h) in HEPES buffered (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4; λ_{ex} = 400 nm) solution.

Fig. S6. Al^{3+} induced emission color changes of L in EtOH: H₂O (4:1, v/v) as a function of time under a hand held UV lamp: a) L (10 μ M), b) L (10 μ M) + Al^{3+} (120 μ M) after 5 minutes, c) L (10 μ M) + Al^{3+} (120 μ M) after 20 minutes.

Fig. S7. Plot of the fluorescence intensity of L (10 μ M) at 586 nm as a function of externally added Al³⁺ (10–110 μ M). All spectra were recorded after 30 min of mixing of L with Al³⁺, $\lambda_{ex} = 400$ nm.

Fig. S8. Changes of absorbance of L (10 μ M) in HEPES buffered (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4) solution upon gradual addition of Al³⁺ (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 μ M). Inset shows the naked eye detection of L (10 μ M) and L (10 μ M) + Al³⁺ (120 μ M). All spectra were recorded after 30 min of mixing of L with Al³⁺.

Fig. S9. Plot of absorbance at 556 nm of L (10 μ M) as a function of externally added Al³⁺ (10–150 μ M). All spectra were recorded after 30 min of mixing of L with Al³⁺.

Fig. S10. Time-dependent changes in the absorption spectra of L (20 μ M) after addition of Al³⁺ (100 μ M) in HEPES buffer (0.1 M; EtOH:H₂O, 4:1 v/v; pH 7.4) (top). Plot of the absorbance intensities at 556 and 441 nm *vs.* time (bottom).

Fig. S11. Changes in the absorbance of L (5 μ M) with time (from 0 to 0.5 h) in presence of Al³⁺ (100 μ M) in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4) solution.

Fig. S12. Plot of the fluorescence intensity of L in the presence of different cations in HEPES buffer (0.1 M; EtOH:H₂O, 4:1 v/v; pH 7.4). L (10 μ M) + Mⁿ⁺ (120 μ M), where Mⁿ⁺ = Na⁺ (1), K⁺ (2), Ca²⁺ (3), Mg²⁺ (4), Mn²⁺ (5), Ni²⁺ (6), Cr³⁺ (7), Fe³⁺ (8), Cu²⁺ (9), Ag⁺ (10), Zn²⁺ (11), Cd²⁺ (12), Pb²⁺ (13), Hg²⁺ (14), Al³⁺ (15). All spectra were recorded after 30 min of mixing of L with Mⁿ⁺, $\lambda_{ex} = 400$ nm.

Fig. S13. Plot of absorbance of L in the presence of different cations in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4). L (10 μ M) + Mⁿ⁺ (120 μ M), where Mⁿ⁺ = Na⁺ (1), K⁺ (2), Ca²⁺ (3), Mg²⁺ (4), Mn²⁺ (5), Ni²⁺ (6), Cr³⁺ (7), Fe³⁺ (8), Cu²⁺ (9), Ag⁺ (10), Zn²⁺ (11), Cd²⁺ (12), Pb²⁺ (13), Hg²⁺ (14), Al³⁺ (15). All spectra were recorded after 30 min of mixing of L with Mⁿ⁺.

Fig. S14. Plot of the fluorescence intensity of L (10 μ M) in the presence of Hg²⁺ (120 μ M) and Al³⁺ (120 μ M) in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4). All spectra were recorded after 30 min of mixing of L with Mⁿ⁺, $\lambda_{ex} = 400$ nm.

Fig. S15. Plot of absorbance of L (10 μ M) in the presence of Hg²⁺ (120 μ M) and Al³⁺ (120 μ M) in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4). All spectra were recorded after 30 min of mixing of L with Mⁿ⁺.

Fig. S16. Effect of Hg²⁺ (120 μ M) on the fluorescence spectra of L (10 μ M) and use of KI (200 μ M) to nullify the interference in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4; $\lambda_{ex} = 400$ nm). All spectra were recorded after 30 min of mixing of L with Hg²⁺, $\lambda_{ex} = 400$ nm.

Fig. S17. Effect of Hg²⁺ (120 μ M) on absorbance of L (10 μ M) and use of KI (200 μ M) to nullify the interference in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4; $\lambda_{ex} = 400$ nm). All spectra were recorded after 30 min of mixing of L with Hg²⁺.

Fig. S18. Effect of Al^{3+} (120 µM) on the fluorescence spectra of L (10 µM) with the further addition of KI (200 µM) in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4). All spectra were recorded after 30 min of mixing of L with Al^{3+} , $\lambda_{ex} = 400$ nm.

Fig. S19. Effect of Al^{3+} (120 μ M) on absorbance of L (10 μ M) with the further addition of KI (200 μ M) in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4). All spectra were recorded after 30 min of mixing of L with Al^{3+} .

Fig. S20. Plot of the fluorescence intensity of the $[L-Al^{3^+}]$ system in the presence of different cations in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4). L (10 µM) + Al^{3^+} (120 µM) + M^{n^+} (200µM), where M^{n^+} = Na^+ (1), K^+ (2), Ca^{2^+} (3), Mg^{2^+} (4), Mn^{2^+} (5), Ni^{2^+} (6), Cr^{3^+} (7), Fe^{3^+} (8), Cu^{2^+} (9), Co^{2^+} (10), Ag^+ (11), Zn^{2^+} (12), Cd^{2^+} (13), Pb^{2^+} (14), Hg^{2^+} (15). All spectra were recorded after 30 min of mixing of $[L-Al^{3^+}]$ with Mⁿ⁺, $\lambda_{ex} = 400$ nm.

Fig. S21. Plot of absorbance of the $[L-Al^{3^+}]$ system in the presence of different cations in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4). L (10 µM) + Al^{3^+} (120 µM) + M^{n^+} (200 µM), where M^{n^+} = Na^+ (1), K^+ (2), Ca^{2^+} (3), Mg^{2^+} (4), Mn^{2^+} (5), Ni^{2^+} (6), Cr^{3^+} (7), Fe^{3^+} (8), Cu^{2^+} (9), Co^{2^+} (10), Ag^+ (11), Zn^{2^+} (12), Cd^{2^+} (13), Pb^{2^+} (14), Hg^{2^+} (15). All spectra were recorded after 30 min of mixing of $[L-Al^{3^+}]$ with M^{n^+} .

Fig. S22. Changes of the emission intensity of L (5 μ M) in HEPES buffer (0.1 M; EtOH:H₂O, 4:1 v/v; pH 7.4; λ_{ex} = 400 nm) upon gradual addition of Al³⁺ (0, 0.02, 0.08, 0.2, 0.5, 1.0, 5.0 μ M) (top). All spectra are recorded after 30 min of mixing of L with Al³⁺, λ_{ex} = 400 nm. Plot of emission intensity at 586 nm *vs.* concentration of Al³⁺ (0, 0.02, 0.08, 0.2, 0.5, 1.0, 5.0 μ M; [L] = 5 μ M) (bottom).

Fig. S23. Job's plot for the determination of stoichiometry of the $[L-Al^{3+}]$ system in HEPES buffer (0.1 M; EtOH: H₂O, 4:1 v/v; pH 7.4). Emission intensities at 586 nm are plotted against $[L]/([L] + [Al^{3+}])$. All spectra are recorded after 30 min of mixing of L with Al^{3+} , $\lambda_{ex} = 400$ nm.

Fig. S24. Determination of the binding constant *K* of **L** for Al^{3+} , where F_{max} , F, and F_{min} are fluorescence intensities of **L** in the presence of Al^{3+} at saturation at 586 nm, fluorescence intensities of free **L** at 455 nm and fluorescence intensities of **L** at any intermediate Al^{3+} concentration at 586 nm, $\lambda_{ex} = 400$ nm.

Fig. S25. Proposed Al^{3+} sensing mechanism by L through tri-color emission.

Fig. S26. Time dependent color change of L (10 μ M) soaked paper in the presence of Al³⁺ (50 μ M) under a hand held UV lamp: after 5 min (left) and after 30 min (right).

Fig. S29. ¹H NMR spectra of **L** before and after 0.5 h of addition of 1 equivalent of $Al(NO_3)_3 \cdot 9H_2O$ in DMSO-*d*₆ (for protons assignment see Scheme S1).

Fig. S30. Fluorescence lifetime decay of L at 455 nm and $[L-Al^{3+}]$ at 501 nm.

Fig. S31. Fluorescence lifetime decay of L at 455 nm and $[L-Al^{3+}]$ at 586 nm.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Table S1. Selected bond lengths (Å) and bond angles (°) for L

Devid Leve the							
Bona lengths $O(1) - C(1)$	1 225(4)	C(5) = C(41)	1 162(5)	C(25)_C(26)	1 370(5)	C(A3) - C(A4)	1 405(4)
O(1) = O(1)	1.200(4)	C(3) = C(41)	1.402(3)	C(23) = C(20)	1.570(5)	C(43) = C(44)	1.403(4)
O(2) - O(22)	1 384(4)	C(6)-C(21)	1.510(5)	C(29) - C(30)	1 490(5)	C(44) - C(45)	1 400(5)
N(1) - C(1)	1 355(4)	C(6) - C(11)	1 524(4)	C(31) = C(32)	1 376(4)	C(44) - C(49)	1 432(5)
N(1) = C(2)	1.333(4)	C(11) = C(12)	1 371(5)	C(31) - C(36)	1 301(5)	C(45) - C(46)	1 374(4)
N(1) - C(2)	1.496(4)	C(11)-C(12)	1.382(5)	C(32)-C(33)	1.376(5)	C(47) - C(48)	1.356(5)
N(2) - C(24)	1.382(5)	C(12)-C(13)	1.383(5)	C(32) - C(33)	1.385(5)	C(48) - C(52)	1.426(5)
N(2) - C(27)	1.479(5)	C(12) - C(14)	1 388(5)	C(34) - C(35)	1.408(5)	C(49) - C(52)	1.336(5)
N(2) - C(29)	1.494(5)	C(14) - C(15)	1.379(6)	C(35) = C(36)	1.358(5)	C(50) - C(56)	1.421(5)
N(2) - C(24)	1 381(4)	C(15) - C(16)	1.389(5)	C(37) - C(38)	1.456(6)	C(51) - C(52)	1 409(4)
N(3) = C(39)	1.301(4)	C(21) - C(22)	1.372(5)	C(39) - C(40)	1 514(5)	C(51) - C(56)	1 427(4)
N(3) - C(37)	1.490(5)	C(21) = C(26)	1.407(5)	C(41) = C(46)	1 388(4)	C(52) - C(53)	1.402(5)
N(4) - C(5)	1 259(4)	C(22) - C(23)	1 387(5)	C(41) = C(42)	1 413(5)	C(52) = C(53)	1 388(5)
N(4) - C(3)	1.257(7)	C(23) - C(24)	1 404(5)	C(42) - C(43)	1 420(4)	C(54) - C(55)	1 365(5)
C(1) = C(12)	1.479(5)	C(24) - C(25)	1.403(5)	C(42) - C(47)	1.442(4)	C(55) - C(56)	1.405(5)
C(2) - C(3)	1 519(5)		1.105(5)		1.112(7)		1.105(5)
Bond angles	1.017(0)						
C(22)–O(2)–C(32)	118.6(3)	C(12)-C(11)-C(16)	121.2(3)	C(30)–C(29)–N(2)	112.2(3)	C(42)–C(43)–C(51)	119.5(3)
C(1)-N(1)-C(2)	121.8(3)	C(12)–C(11)–C(6)	110.9(3)	C(32)–C(31)–C(36)	115.1(3)	C(45)–C(44)–C(43)	118.6(3)
C(1)–N(1)–C(6)	114.7(3)	C(16)–C(11)–C(6)	127.9(3)	C(32)–C(31)–C(6)	122.7(3)	C(45)-C(44)-C(49)	122.8(3)
C(2)–N(1)–C(6)	123.3(3)	C(11)–C(12)–C(13)	121.8(3)	C(36)–C(31)–C(6)	122.2(3)	C(43)-C(44)-C(49)	118.6(3)
C(24)–N(2)–C(27)	122.6(3)	C(11)–C(12)–C(1)	109.2(3)	C(33)–C(32)–C(31)	123.5(3)	C(46)-C(45)-C(44)	120.8(3)
C(24)–N(2)–C(29)	119.1(3)	C(13)-C(12)-C(1)	129.1(4)	C(33)–C(32)–O(2)	113.7(3)	C(45)-C(46)-C(41)	121.5(3)
C(27)–N(2)–C(29)	114.7(3)	C(12)-C(13)-C(14)	117.5(4)	C(31)–C(32)–O(2)	122.9(3)	C(48)-C(47)-C(42)	121.9(3)
C(34)–N(3)–C(39)	120.8(3)	C(15)-C(14)-C(13)	120.7(4)	C(32)-C(33)-C(34)	120.6(3)	C(47)-C(48)-C(52)	121.3(3)
C(34)–N(3)–C(37)	121.8(3)	C(14)-C(15)-C(16)	121.6(4)	N(3)-C(34)-C(33)	120.5(3)	C(50)-C(49)-C(44)	122.4(3)
C(39)–N(3)–C(37)	116.6(3)	C(11)-C(16)-C(15)	117.3(4)	N(3)-C(34)-C(35)	122.6(3)	C(49)–C(50)–C(56)	121.3(3)
C(5)-N(4)-C(3)	116.8(3)	C(22)–C(21)–C(26)	114.8(3)	C(33)-C(34)-C(35)	116.8(3)	C(52)–C(51)–C(56)	120.2(3)
O(1)-C(1)-N(1)	125.4(3)	C(22)–C(21)–C(6)	122.7(3)	C(36)–C(35)–C(34)	120.7(3)	C(52)-C(51)-C(43)	120.4(3)
O(1)-C(1)-C(12)	128.7(3)	C(26)–C(21)–C(6)	122.6(3)	C(35)–C(36)–C(31)	123.2(3)	C(56)-C(51)-C(43)	119.4(3)
N(1)-C(1)-C(12)	105.9(3)	C(21)–C(22)–O(2)	123.2(3)	C(38)–C(37)–N(3)	110.6(4)	C(53)–C(52)–C(51)	119.3(3)
N(1)-C(2)-C(3)	110.8(3)	C(21)-C(22)-C(23)	124.1(3)	N(3)-C(39)-C(40)	116.8(4)	C(53)-C(52)-C(48)	121.9(3)
N(4)-C(3)-C(2)	109.2(3)	O(2)–C(22)–C(23)	112.7(3)	C(46)-C(41)-C(42)	119.6(3)	C(51)-C(52)-C(48)	118.8(3)
N(4)-C(5)-C(41)	122.4(3)	C(22)–C(23)–C(24)	120.6(4)	C(46)–C(41)–C(5)	119.3(3)	C(54)-C(53)-C(52)	119.6(4)
N(1)-C(6)-C(31)	110.7(3)	N(2)-C(24)-C(25)	123.6(4)	C(42)–C(41)–C(5)	121.1(3)	C(55)-C(54)-C(53)	122.1(4)
N(1)-C(6)-C(21)	112.8(3)	N(2)-C(24)-C(23)	120.6(4)	C(41)-C(42)-C(43)	118.5(3)	C(54)-C(55)-C(56)	120.3(4)
C(31)-C(6)-C(21)	109.9(3)	C(25)-C(24)-C(23)	115.8(4)	C(41)-C(42)-C(47)	123.4(3)	C(55)-C(56)-C(50)	122.7(3)
N(1)-C(6)-C(11)	99.3(3)	C(26)-C(25)-C(24)	122.0(4)	C(43)-C(42)-C(47)	118.1(3)	C(55)-C(56)-C(51)	118.6(3)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013										
C(31)-C(6)-C(11)	112.2(3)	C(25)-C(26)-C(21)	122.6(4)	C(44)-C(43)-C(42)	120.9(3)	C(50)-C(56)-C(51)	118.8(3)			
C(21)-C(6)-C(11)	111.7(3)	N(2)-C(27)-C(28)	112.7(3)	C(44)-C(43)-C(51)	119.6(3)					

Table S2. Chemical shifts of protons (δ , ppm) in the ¹H NMR spectra of **L** before and after addition of 1 equivalent of Al(NO₃)₃·9H₂O in DMSO-*d*₆ (protons a labeled as given in Scheme 1).

	a	b	c	d	e	f	g	h	i	j	k	1	m
L	1.04	3.26	3.43	3.57	6.	26–6.4	44	6.99–7.11	7.45–7.58	7.78–7.88	8.06-8.45	8.93	8.96
[L-Al ³⁺]	1.09		3.20-3.4	0	6.	30–6.4	46	6.99–7.09	7.47–7.56, 7.63 ^{<i>a</i>}	7.78–7.89	8.16-8.67	9.41	9.44

^{*a*} Original signal splitted into two parts.

Table S3. Fluorescence life time decay parameters of L and its Al^{3+} complex

	\mathbf{B}_1	τ_1 (ns)	B ₂	τ_2 (ns)	<\tau_2> (ns)
L at 455 nm	0.211	0.185	0.028	1.80	0.3788
[L–Al ³⁺] at 501 nm after 5 min	0.092	5.930	0.046	3.249	1.484
[L–Al ³⁺] at 501 nm after 15 min	0.107	0.662	0.03	3.064	1.219
[L–Al ³⁺] at 501 nm after 30 min	0.113	0.062	0.026	2.71	1.010
[L–Al ³⁺] at 586 nm after 30 min	0.037	0.617	0.094	3.411	2.611