Support Informations

Dithia[3.3]paracyclophane-Bridged Bimetallic Ruthenium Acetylide Complexes : Synthesis, Structures and Influence of transannular π - π interactions on Their Electronic Properties

Jianlong Xia*, Ya-Ping Ou, Di Wu, Guo-Jun Jin, Jun Yin, Guang-Ao Yu, Sheng Hua Liu*

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China

*Corresponding Author, Email: chshliu@mail.ccnu.edu.cn (S. H. Liu) jianlongxia@gmail.com (J. Xia)

Table S1. Crystal data and structure refinement for 2 and 3.

Figure S1. Cyclic voltammograms (CV) of complexes 2 and 3.

- Figure S2. IR spectra of 1^{n+} (n = 0-2) collected during the oxidation titration with ferrocenium hexafluorophosphate([FcH][PF₆]).
- Figure S3. UV/Vis/NIR absorption spectra changes of 1 after titration with ferrocenium hexafluorophosphate.
- **Table S2**. Selected bond lengths and angles of $[2-H]/[2-H]^+$ from the computational models, together with analogous data from the crystallographically determined structures of 2.
- **Table S3**. Selected bond lengths and angles of $[3-H]/[3-H]^+$ from the computational models, together with analogous data from the crystallographically determined structures of **3**.
- Table S4. Energy and composition of frontier molecular orbitals in the model complexes [2-H]
- **Table S5.** Energy and composition of frontier molecular orbitals in the model complexes [2-H]⁺
- Table S6. Energy and composition of frontier molecular orbitals in the model complexes [2-H]²⁺
- Table S7. Energy and composition of frontier molecular orbitals in the model complexes [3-H]
- Table S8. Energy and composition of frontier molecular orbitals in the model complexes [3-H]⁺
- Table S9. Energy and composition of frontier molecular orbitals in the model complexes $[3-H]^{2+}$
- Table S10. Major electronic excitations for [2-H] determined by TD-DFT methods using B3LYP/3-21G*
- Table S11. Major electronic excitations for [2-H]⁺ determined by TD-DFT methods using B3LYP/3-21G*
- Table S12. Major electronic excitations for [3-H] determined by TD-DFT methods using B3LYP/3-21G*
- Table S13. Major electronic excitations for [3-H]⁺ determined by TD-DFT methods using B3LYP/3-21G*

Compound	2	3·CH ₂ Cl ₂		
formula	$C_{96}H_{94}P_4Ru_2S_2$	$C_{101}H_{98}Cl_2P_4Ru_2S_2$		
FW	1637.85	1772.83		
$T(\mathbf{K})$	298(2)	298(2) K		
Cryst. syst.	Triclinic	Monoclinic		
Space group	P-1	P2(1)/n		
<i>a</i> (Å)	11.273(3)	16.3268(17)		
$b(\text{\AA})$	18.957(6)	26.119(4)		
$c(\text{\AA})$	19.482(6)	20.599(2)		
α (°)	91.609(6)	90		
eta (°)	102.283(6)	103.128(11)		
γ (°)	94.418(7)	90		
$V(\text{\AA}^3)$	4052(2)	8554.5(18)		
Ζ	2	4		
$D_{\text{(calcl.)}}(\text{g cm}^{-3})$	1.342	1.377		
Absor.coeff. (mm ⁻¹)	0.550	0.587		
F(000)	1700	3672		
Crystal size (mm ³)	0.10 x 0.09 x 0.08	0.23 x 0.12 x 0.10		
θ Range (°)	1.86 to 25.00	1.86 to 28.39		
	-13≤h≤13,	-21≤h≤21,		
Index ranges	-22≤k≤22,	-34≤k≤34,		
	-23≤1≤23	-27≤1≤27		
Reflections collected	39683	105393		
Independent reflec.	14263 $[R_{(int)} = 0.1261]$	21247 [$R_{(int)} = 0.0872$]		
Data / restr. / param.	14263/19/816	21247/0/1010		
Goodness-of-fit / F^2	0.841	1.054		
$\Gamma'_{1} = 1 \Gamma_{1} + 1'_{1} + 1 \Gamma_{2} + 2 \Gamma_{1} + 2 \Gamma_{1} + 1 \Gamma_{2}$	R1 = 0.0777,	R1 = 0.0659,		
Final R indices [1>2sigma(1)]	wR2 = 0.1641	wR2 = 0.1296		
	R1 = 0.1843,	R1 = 0.1119,		
$\kappa_{\rm ind}$ (all data)	wR2 = 0.1926	wR2 = 0.1460		
diff. peak and hole	$2.905 \text{ and } -1.832 \text{ e.}^{-3}$	$0.765 \text{ and } -0.393 \text{ e.}^{-3}$		

Table S1.Crystal data and structure refinement for 2 and $3 \cdot CH_2Cl_2$.

Figure S1. Cyclic voltammograms (CV) of complexes 2 and 3 in $CH_2Cl_2/n-Bu_4NPF_6$ (0.1 M) at v = 0.1 V/s.

Figure S2. v(C=C) spectra of 1^{n+} (n = 0-2) collected during the oxidation titration with ferrocenium hexafluorophosphate([FcH][PF₆]).

Figure S3. UV/Vis/NIR absorption spectra changes of 2 and 3 after titration with ferrocenium hexafluorophosphate.

Table S2. Selected bond lengths and angles of [2-H]/[2-H]] ⁺ from the computational models,
---	---

together with analogous data from the crystallographically determined structures of 2.^a

	Bond distance	ees (Å)	
	2	[2-H]	$[2-H]^+$
Ru(1)-C(37)	1.972(10)	2.01939	1.97621
Ru(1)-P(2)	2.244(3)	2.27798	2.30027
Ru(1)-P(1)	2.247(3)	2.27677	2.29614
Ru(2)-C(60)	2.011(10)	2.01341	1.95863
C(59)-C(60)	1.212(11)	1.22802	1.24281
C(37)-C(38)	1.234(12)	1.22939	1.24094
C(38)-C(39)	1.459(11)	1.42593	1.39714
Ru(2)-P(3)	2.246(3)	2.27902	2.30004
Ru(2)-P(4)	2.244(3)	2.27906	2.30278
C(42)-C(59)	1.439(10)	1.42068	1.38935
ł	Bond angle	es (°)	
	2	[2-H]	$[2-\mathbf{H}]^+$
C(38)-C(37)-Ru(1)	177.4(9)	178.98383	178.50595
C(37)-C(38)-C(39)	169.1(10)	178.90104	177.62154
C(60)-C(59)-C(42)	174.3(10)	179.06653	179.00057
C(59)-C(60)-Ru(2)	170.1(8)	178.54904	175.96723

^a for atom labeling schemes, see ORTEP drawing of compound **2** (Figure 2).

	Bond dist	ances (Å)	
	3	[3-H]	$[3-\mathbf{H}]^+$
Ru(1)-C(37)	2.024(4)	2.01869	1.96993
Ru(1)-P(2)	2.2655(10)	2.27435	2.30177
Ru(1)-P(1)	2.2659(11)	2.27921	2.29569
Ru(2)-C(64)	2.015(4)	2.01843	1.96972
Ru(2)-P(3)	2.2605(12)	2.27965	2.29607
C(37)-C(38)	1.215(5)	1.22847	1.24145
C(38)-C(39)	1.439(5)	1.42592	1.39463
Ru(2)-P(4)	2.2731(11)	2.27428	2.30184
C(42)-C(63)	1.438(5)	1.42597	1.39463
C(63)-C(64)	1.209(5)	1.22849	1.24143
	Bond ar	ngles (°)	
	3	[3-H]	$[3-\mathbf{H}]^+$
C(64)-C(63)-C(42)	168.1(4)	175.45320	177.06421
C(63)-C(64)-Ru(2)	167.7(3)	177.17197	178.19118
C(38)-C(37)-Ru(1)	173.6(3)	177.23944	178.19555
C(37)-C(38)-C(39) 172.2(4) 175.70517			177.18415

Table S3. Selected bond lengths and angles of $[3-H]/[3-H]^+$ from the computational models,

together with analogous data from the crystallographically determined structures of **3**.^a

^a for atom labeling schemes, see ORTEP drawing of compound **3** (Figure 3).

					(B3L	YP/3-21G	*)						
МО		eV	(C_6H_2)	(CH ₂ SCH ₂) ₂	(PH ₃) ₂ a	(PH ₃) ₂ b	Cp1	Ru2	(C≡C)2	(C≡C)1	Ru1	Cp2	naph.
217	L+5	-0.04	0	1	21	0	5	0	0	1	71	0	0
216	L+4	-0.21	7	1	12	0	12	1	1	7	54	0	4
215	L+3	-0.27	38	4	2	1	4	4	8	10	13	1	16
214	L+2	-0.51	0	0	0	27	0	50	0	0	0	23	0
213	L+1	-0.85	4	9	1	1	1	1	1	0	2	0	80
212	LUMO	-0.83	0	0	26	0	23	0	0	0	48	0	3
211	НОМО	-4.31	32	1	1	0	1	14	24	16	9	1	1
210	H-1	-4.78	3	5	0	4	0	42	36	1	1	9	0
209	Н-2	-5.18	5	3	3	2	6	19	6	21	28	3	4
208	Н-3	-5.25	16	12	1	2	1	15	3	8	9	3	31
207	H-4	-5.32	7	8	2	0	2	3	0	17	25	1	35
206	H-5	-5.49	6	40	0	6	0	23	6	1	2	12	4

 Table S4. Energy and composition of frontier molecular orbitals in the model complexes [2-H]

					(B3LYP	/3 - 21G*)							
MOs		eV	(C_6H_2)	$(CH_2SCH_2)_2$	(PH ₃) ₂ a	(PH ₃) ₂ b	Cp1	Ru2	(C≡C)2	(C≡C)1	Ru1	Cp2	naph
α-217	α-LUSO+5	-2.82	0	0	14	0	19	1	0	9	55	0	0
β-216	β-LUSO+5	-2.78	0	0	14	0	18	1	0	9	56	0	0
α-216	α-LUSO+4	-2.83	1	0	0	15	0	53	10	0	1	19	0
β-215	β-LUSO+4	-3.02	23	7	0	1	1	3	5	5	2	1	52
α-215	α-LUSO+3	-3.09	10	9	0	1	0	1	1	1	0	0	75
β-214	β-LUSO+3	-3.26	34	7	0	1	1	4	9	7	3	1	34
α-214	α-LUSO+2	-3.43	0	0	26	0	25	0	0	0	49	0	0
β-213	β-LUSO+2	-3.39	0	0	26	0	25	0	0	0	49	0	0
α-213	α-LUSO+1	-3.53	48	4	1	2	1	10	11	9	2	5	7
β-212	β-LUSO+1	-3.48	0	0	0	26	0	48	0	0	0	24	1
α-212	α-LUSO	-3.55	6	1	0	25	0	42	2	1	0	20	3
β-211	β-LUSO	-6.02	30	1	1	1	2	15	21	15	9	3	1
α-211	α-HOSO	-7.23	28	1	2	2	3	12	16	17	14	3	4
β-210	β-HOSO	-7.58	9	6	2	1	5	11	7	13	21	2	23
α-210	α-HOSO-1	-7.65	5	8	0	0	0	0	0	1	2	0	83
β-209	β-HOSO-1	-7.65	8	12	0	1	1	7	4	2	3	1	61
α-209	α-HOSO-2	-7.86	4	70	0	0	0	8	10	1	2	1	5
β-208	β-HOSO-2	-7.87	4	59	0	1	0	14	13	1	2	1	5
α-208	α-HOSO-3	-7.95	5	67	1	0	1	1	1	10	12	0	4
β-207	β-HOSO-3	-7.93	4	56	1	0	2	0	0	14	18	0	4
α-207	α-HOSO-4	-8.09	5	8	4	2	7	15	9	15	30	4	1
β-206	β-HOSO-4	-8.16	3	25	3	1	5	9	4	12	34	1	2
α-206	α-HOSO-5	-8.26	5	12	5	2	9	10	5	10	38	4	1
β-205	β-HOSO-5	-8.22	2	24	1	4	1	36	13	2	6	6	6

Table S5. Energy and composition of frontier molecular orbitals in the model complexes $[2-H]^+$

					(D)L	11/5-210)						
МО		eV	(C_6H_2)	$(CH_2SCH_2)_2$	(PH ₃) ₂ a	(PH ₃) ₂ b	Cp1	Ru2	(C≡C)2	(C≡C)1	Ru1	Cp2	naph.
216	L+5	-5.54	9	6	5	1	8	1	0	4	21	0	45
215	L+4	-5.6	0	0	0	15	0	52	10	0	0	21	1
214	L+3	-6.18	0	0	25	0	26	0	0	0	48	0	0
213	L+2	-6.3	2	0	0	24	0	46	0	1	0	26	0
212	L+1	-6.36	52	3	1	3	1	6	14	12	4	1	3
211	LUMO	-8.92	28	1	2	2	3	13	16	16	13	3	4
210	HOMO	-10.02	3	8	0	0	0	0	0	1	1	0	86
209	H-1	-10.33	5	73	1	0	1	4	5	2	4	1	4
208	H-2	-10.41	4	80	0	0	0	2	2	2	2	0	6
207	Н-3	-10.58	11	17	3	3	6	17	9	8	17	6	3
206	H-4	-10.93	2	1	0	1	0	5	3	1	2	1	84
205	H-5	-11.01	2	4	4	0	7	2	1	27	53	0	1

Table S6. Energy and composition of frontier molecular orbitals in the model complexes **[2-H]**²⁺

(B3LYP/3-21G*)

					(2		10)						
MO		eV	anth.	$\mathrm{C}_{6}\mathrm{H}_{2}$	(CH ₂ SCH ₂) ₂	$(PH_3)_2a$	(PH ₃) ₂ b	Cp1	Ru2	(C≡C)2	(C≡C)1	Ru1	Cp2
230	L+5	-0.04	0	2	0	12	0	17	1	0	9	56	0
229	L+4	-0.05	0	2	0	0	13	0	56	10	1	1	17
228	L+3	-0.23	55	22	1	1	1	0	6	4	4	5	0
227	L+2	-0.68	0	0	0	27	0	23	0	0	0	50	0
226	L+1	-0.69	0	0	0	0	27	0	50	0	0	0	23
225	LUMO	-1.61	91	1	7	0	0	0	0	0	0	0	0
224	НОМО	-4.28	5	33	1	0	0	1	10	20	20	10	1
223	H - 1	-4.92	58	7	6	1	0	2	5	4	7	9	1
222	H-2	-4.96	1	3	4	2	2	4	21	18	19	22	4
221	H-3	-4.99	24	2	3	1	2	2	19	16	12	14	3
220	H-4	-5.27	0	6	3	2	2	3	26	13	13	27	3
219	Н-5	-5.46	6	27	63	0	0	0	1	0	0	2	0

Table S7. Energy and composition of frontier molecular orbitals in the model complexes [3-H]

(B3LYP/3-21G*)

					(DJL11/	5-210)						
MOs		eV	C_6H_2	(CH ₂ SCH ₂) ₂	(PH ₃) ₂ a	anth.	(PH ₃) ₂	Cp1	Ru2	(C≡C)2	(C≡C)1	Ru1	Cp2
α-230	α-LUSO+5	-2.78	0	0	0	0	15	0	56	10	0	0	19
β-229	β-LUSO+5	-2.74	0	0	15	0	0	19	0	0	10	56	0
α-229	α-LUSO+4	-2.8	0	0	15	0	0	19	0	0	10	56	0
β-228	β-LUSO+4	-2.99	51	2	1	9	1	1	4	12	12	4	1
α-228	α-LUSO+3	-3.26	55	3	1	9	1	1	3	12	12	3	1
β-227	β-LUSO+3	-3.37	0	0	0	0	26	0	49	0	0	0	25
α-227	α-LUSO+2	-3.42	0	0	0	0	26	0	49	0	0	0	25
β-226	β-LUSO+2	-3.39	0	0	26	0	0	25	0	0	0	49	0
α-226	α-LUSO+1	-3.45	0	0	26	0	0	25	0	0	0	49	0
β-225	β-LUSO+1	-3.84	3	7	0	87	0	0	0	0	0	0	0
α-225	α-LUSO	-3.89	5	7	0	84	0	0	0	1	1	0	0
β-224	β-LUSO	-5.91	29	1	1	5	1	2	11	18	18	11	2
α-224	α-HOSO	-7.01	19	3	1	36	1	2	7	11	11	7	2
β-223	β-HOSO	-7.15	3	6	0	87	0	0	1	1	1	1	0
α-223	α-HOSO-1	-7.28	11	4	1	57	1	1	6	6	6	5	1
β-222	β-HOSO-1	-7.5	11	5	2	1	3	4	21	14	14	21	5
α-222	α-HOSO-2	-7.87	5	54	1	4	1	1	11	9	5	7	2
β-221	β-HOSO-2	-7.86	9	71	0	3	0	0	5	4	3	3	0
α-221	α-HOSO-3	-7.88	8	74	0	3	0	1	1	1	6	6	0
β-220	β-HOSO-3	-7.92	5	51	1	6	0	1	9	7	9	11	1
α-220	α-HOSO-4	-8.1	8	14	3	5	3	5	19	10	10	18	5
β-219	β-HOSO-4	-8.09	3	15	1	1	2	2	27	13	11	20	3
α-219	α-HOSO-5	-8.14	2	11	1	1	3	2	32	15	10	18	4
β-218	β-HOSO-5	-8.15	2	32	2	3	2	3	17	6	9	22	3

Table S8. Energy and composition of frontier molecular orbitals in the model complexes [**3-H**]⁺

(B3LYP/3-21G*)

					(B	3LYP/3-2	1G*)						
MO		eV	anth.	$\mathrm{C}_{6}\mathrm{H}_{2}$	(CH ₂ SCH ₂) ₂	(PH ₃) ₂ a	(PH ₃) ₂ b	Cp1	Ru2	(C≡C)2	(C≡C)1	Ru1	Cp2
229	L+5	-5.4	0	0	9	0	5	13	20	4	6	34	8
228	L+4	-6.04	1	0	11	0	13	12	26	0	0	22	14
227	L+3	-6.04	0	0	14	0	12	14	22	0	0	26	12
226	L+2	-6.05	48	3	1	15	1	1	4	11	11	4	1
225	L+1	-6.55	10	6	0	77	0	0	1	2	2	1	0
224	LUMO	-8.76	25	2	2	14	2	2	11	15	15	11	2
223	НОМО	-9.77	4	5	0	78	0	1	3	2	2	3	1
222	H-1	-10.32	9	25	3	2	3	5	16	9	9	16	5
221	H-2	-10.43	6	86	0	4	0	0	1	1	1	1	0
220	Н-3	-10.51	7	55	1	8	1	2	7	5	4	7	2
219	H-4	-10.88	2	4	2	0	2	3	28	14	14	27	3
218	H-5	-10.9	2	8	2	1	2	4	26	12	13	27	3

Table S9. Energy and composition of frontier molecular orbitals in the model complexes $[3-H]^{2+}$

Energy (cm ⁻¹)	Wavelength (nm)	Osc. Strength (f)	Major contribs
21351	468	0.0037	HOMO-2→LUMO (11%), HOMO→LUMO (72%)
22839	437	0.0019	HOMO→LUMO+2 (64%)
23647	423	0.0172	HOMO→LUMO+1 (86%)
23704	421	0.0154	HOMO-1→LUMO+2 (66%), HOMO→LUMO+1 (10%)
25911	386	0.0068	HOMO→LUMO+3 (27%), HOMO→LUMO+4 (24%)
26740	374	0.0132	HOMO→LUMO+6 (-13%), HOMO→LUMO+7 (28%)
28449	351	0.0058	HOMO-4→LUMO+3 (20%), HOMO-4→LUMO+4 (18%), HOMO-2→LUMO+3 (-13%), HOMO-2→LUMO+4 (-11%)
29384	340	0.5502	HOMO→LUMO+3 (-37%), HOMO→LUMO+4 (40%)
30004	333	0.0009	HOMO-4→LUMO (11%), HOMO-2→LUMO (20%), HOMO-1→LUMO (29%)
30886	323	0.0793	HOMO-3→LUMO+1 (36%), HOMO→LUMO+6 (22%), HOMO→LUMO+7 (15%)

Table S10. Major electronic excitations for [2-H] determined by TD-DFT methods using

B3LYP/3-21G*

		B3LYP/3-21G*	
Energy (cm ⁻¹)	Wavelength (nm)	Osc. Strength (f)	Major contribs
			β-HOSO-5→β-LUSO (-14%),
7923	1262	0.0028	β-HOSO-2→β-LUSO (63%),
			β-HOSO-1→β-LUSO (-16%)
Q111	1100	0.021	β-HOSO-1→β-LUSO (45%),
0414	1100	0.021	β-HOSO→β-LUSO (43%)
			β-HOSO-4→β-LUSO (-21%),
9356	1068	0.073	β-HOSO-3→β-LUSO (49%),
			β-HOSO-1→β-LUSO (-20%)
			β-HOSO-3→β-LUSO (-29%),
9936	1006	0.2778	β-HOSO-1→β-LUSO (-16%),
			β-HOSO→β-LUSO (44%)
			β-HOSO-5→β-LUSO (44%),
11421	875	0.0951	β-HOSO-4→β-LUSO (-23%),
			β-HOSO-2→β-LUSO (25%)
			β-HOSO-5→β-LUSO (34%),
12209	819	0.044	β-HOSO-4→β-LUSO (48%),
			β-HOSO-3→β-LUSO (14%)
			β-HOSO-8→β-LUSO (-13%),
13256	754	0.0024	β-HOSO-7→β-LUSO (68%),
			β-HOSO-6→β-LUSO (-13%)
14225	607	0.0008	β-HOSO-7→β-LUSO (22%),
14355	097	0.0098	β-HOSO-6→β-LUSO (68%)
15502	615	0.0075	β-HOSO-8→β-LUSO (75%),
15502	043	0.0075	β-HOSO-6→β-LUSO (-12%)
16850	593	0.0042	β-HOSO-9→β-LUSO (85%)
			α-HOSO-4→α-LUSO+2 (17%),
20630	484	0.0025	α-HOSO→α-LUSO+2 (45%),
			β-HOSO→β-LUSO+2 (-14%)

Table S11. Major electronic excitations for $[2-H]^+$ determined by TD-DFT methods using

Wavelength (nm)	Osc. Strength (f)	Major contribs	
577	0.0052	HOMO→LUMO (98%)	
453	0.0014	HOMO-4→LUMO+1 (-12%),	
		HOMO→LUMO+1 (72%)	
431	0.0032	HOMO-3→LUMO (-33%),	
		HOMO-2→LUMO (15%),	
		HOMO-1→LUMO (42%)	
429	0.0019	HOMO-3→LUMO (10%),	
		HOMO-2→LUMO (76%)	
422	0.0062	HOMO-3→LUMO+2 (-19%),	
		HOMO-2→LUMO+2 (35%)	
422	0.008	H HOMO-3→LUMO+1 (33%),	
		HOMO-2→LUMO+1 (21%),	
		HOMO-2→LUMO+2 (-11%)	
412	0.0357	HOMO-3→LUMO (52%),	
		HOMO-1→LUMO (28%)	
387	0.0043	HOMO-4→LUMO (92%)	
384	0.0123	HOMO-5→LUMO (89%)	
381	0.001	HOMO→LUMO+4 (55%)	
351	0.0991	HOMO→LUMO+3 (74%)	
	Wavelength (nm) 577 453 431 429 422 422 422 412 387 384 381 351	Wavelength (nm) Osc. Strength (f) 577 0.0052 453 0.0014 431 0.0032 429 0.0019 422 0.0062 422 0.008 412 0.0357 387 0.0043 384 0.0123 381 0.001 351 0.0991	

Table S12. Major electronic excitations for [3-H] determined by TD-DFT methods using

B3LYP/3-21G*

		D 5 E 1175 E 10	
Energy (cm ⁻¹)	Wavelength (nm)	Osc. Strength (f)	Major contribs
6038	1656	0.0172	β-HOSO→β-LUSO (100%)
9148 1093			β-HOSO-5→β-LUSO (-13%),
	0.1037	β-HOSO-3→β-LUSO (-41%),	
		β-HOSO-1→β-LUSO (43%)	
10582 945	0.356	β-HOSO-5→β-LUSO (13%),	
		β-HOSO-3→β-LUSO (30%),	
		β-HOSO-1→β-LUSO (54%)	
12(70 700	0.022(β-HOSO-5→β-LUSO (73%),	
12078	12678 /88	0.0236	β-HOSO-3→β-LUSO (-26%)
		α-HOSO-1→α-LUSO (-23%),	
13365	13365 748	0.0005	α-HOSO→α-LUSO(27%),
			β-HOSO→β-LUSO+1 (46%)
	(00	0.0007	β-HOSO-8→β-LUSO (27%),
14494	14494 689		β-HOSO-6→β-LUSO (69%)
14631	683	0.0003	β-HOSO-7→β-LUSO (96%)
			β-HOSO-9→β-LUSO (-14%),
15765 634	0.0093	β-HOSO-8→β-LUSO (59%),	
			β-HOSO-6→β-LUSO (-21%)
16966 589	500	0.00(2	β-HOSO-9→β-LUSO (76%),
	0.0062	β-HOSO-8→β-LUSO (10%)	
19405	515	0.0001	β-HOSO-10→β-LUSO (88%)

Table S13. Major electronic excitations for [3-H]⁺ determined by TD-DFT methods using

B3LYP/3-21G*