Molecular rectangles from platinum(II) and bridging dicarbene, diisocyanide and 4,4'-bipyridine ligands

Markus Schmidtendorf, Tania Pape, and F. Ekkehardt Hahn*

Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany

Supporting Information

1. Crystals data for and molecular structures of *anti*-[6]Br₂·2MeOH·0.5C₆H₁₄, *anti*-[9]Br₂·4MeOH and *anti*-[10]Br₂·MeOH

Crystal data for *anti*-[6]Br₂·2MeOH·0.5C₆H₁₄. C₃₃H₆₉N₄Br₄O₂P₄Pt₂, M = 1387.62, colorless crystal, 0.27 × 0.18 × 0.10 mm³, a = 10.2551(6), b = 12.2648(7), c = 20.1873(12) Å, , $\alpha = 77.4950(10)$, $\beta = 81.3650(10)$, $\gamma = 86.3760(10)^{\circ}$, V = 2449.5(2) Å³, triclinic, P-1, $\rho_{calcd} = 1.881$ g·cm⁻³, Mo K α radiation, $\mu = 9.129$ mm⁻¹, semiempirical absorption correction (0.192 $\leq T \leq 0.462$), ω - und φ -scans, 28746 measured intensities (4.4° $\leq 2\theta \leq 60.0^{\circ}$), 14164 independent ($R_{int} = 0.0325$) diffraction data, refinement of 435 parameters against all F^2 , R = 0.0401, wR = 0.0998 for 11213 observed data ($I \geq 2\sigma(I)$), $R_{all} = 0.0558$, $wR_{all} = 0.1065$ for all data. The asymmetric unit contains one formula unit.

Molecular Structure of anti-[6]Br2·2MeOH·0.5C6H14

Fig. S1 Molecular structures (50% displacement ellipsoids) of the dication *anti*- $[6]^{2+}$ in *anti*- $[6]Br_2 \cdot 2MeOH \cdot 0.5C_6H_{14}$ with hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Pt–Br1 2.4845(6), Pt–P1 2.2202(15), Pt–P2 2.2823(15), Pt–C1 2.026(5); Br1–Pt–P1 177.08(5), Br1–Pt–P2 92.61(4), Br1–Pt–C1 90.52(15), P1–Pt–P2 86.2(6), P1–Pt–C1 90.78(15), P2–Pt–C1 174.8(2).

Crystal data for *anti*-[9]Br₂·4MeOH. C₄₀H₈₆N₄Br₄O₄P₄Pt₂, M = 1512.76, colorless crystal, 0.32 × 0.18 × 0.16 mm³, a = 11.4288(8), b = 10.7546(7), c = 24.763(2) Å, $\beta = 99.2950(10)^{\circ}$, V = 3003.7(4) Å³, monoclinic, $P2_1/c$, Z = 2, $\rho_{calcd} = 1.673$ g·cm⁻³, Mo K α radiation, $\mu = 7.455$ mm⁻¹, semiempirical absorption correction (0.199 $\leq T \leq 0.382$), ω - und φ -scans, 27935 measured intensities (3.3° $\leq 2\theta \leq 58.0^{\circ}$), 7936 independent ($R_{int} = 0.0377$) diffraction data, refinement of 271 parameters against all F^2 , R = 0.0402, wR = 0.0972 for 6397 observed data ($I \geq 2\sigma(I)$), $R_{all} = 0.0543$, $wR_{all} = 0.1036$ for all data. The asymmetric unit contains ½ formula unit related to the other half by a crystallographic inversion center.

Molecular Structure of *anti*-[9]Br₂·4MeOH

Fig. S2 Molecular structures (50% displacement ellipsoids) of the dication *anti*-[**9**]²⁺ in *anti*-[**6**]Br₂·4MeOH with hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Pt–Br1 2.4831(7), Pt–P1 2.2228(15), Pt–P2 2.2680(15), Pt–C1 2.039(5); Br1–Pt–P1 176.17(4), Br1–Pt–P2 90.58(5), Br1–Pt–C1 92.1(2), P1–Pt–P2 86.15(6), P1–Pt–C1 91.2(2), P2–Pt–C1 177.1(2).

Crystal data for *anti*-[10]Br₂·MeOH. C₃₇H₇₄N₄Br₄OP₄Pt₂, M = 1424.70, colorless crystal, 0.19 × 0.10 × 0.05 mm³, a = 11.4812(5), b = 10.8653(5), c = 21.0825(10) Å, $\beta = 93.9670(10)^{\circ}$, V = 2623.7(2) Å³, monoclinic, $P2_1/c$, Z = 2, $\rho_{calcd} = 1.803$ g·cm⁻³, Mo K α radiation, $\mu = 8.524$ mm⁻¹, semiempirical absorption correction (0.294 $\leq T \leq 0.675$), ω - und φ -scans, 28853 measured intensities (3.6° $\leq 2\theta \leq 60.0^{\circ}$), 7577 independent ($R_{int} = 0.0403$) diffraction data, refinement of 254 parameters against all F^2 , R = 0.0358, wR = 0.0878 for 6316 observed data ($I \geq 2\sigma(I)$), $R_{all} = 0.0470$, $wR_{all} = 0.0927$ for all data. The asymmetric unit contains ½ formula unit related to the other half by a crystallographic inversion center.

Molecular Structure of *anti*-[10]Br₂·MeOH

Fig. S3 Molecular structures (50% displacement ellipsoids) of the dication *anti*-[**10**]²⁺ in *anti*-[**6**]Br₂·MeOH with hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Pt−Br1 2.5093(5), Pt−P1 2.2225(13), Pt−P2 2.2831(12), Pt−C1 2.040(5); Br1−Pt−P1 174.53(3), Br1−Pt−P2 88.79(4), Br1−Pt−C1 93.49(12), P1−Pt−P2 85.75(5), P1−Pt−C1 91.98(13), P2−Pt−C1 176.20(13).

2. ¹H and ¹³C NMR spectra for all new compounds

Fig. S4 ¹H-NMR spectrum of **2**-Br₂ in D_6 -DMSO.

Fig. S5 ${}^{13}C{}^{1}H$ -NMR spectrum of **2**-Br₂ in D₆-DMSO.

Fig. S6 ¹H-NMR spectrum of **3**-Br₂ in D₆-DMSO.

Fig. S7 $^{13}C{^{1}H}$ -NMR spectrum of **3**-Br₂ in D₆-DMSO.

Fig. S8 ¹H-NMR spectrum of **4**-Br₂ in D₆-DMSO.

Fig. S9 $^{13}C{^{1}H}$ -NMR spectrum of 4-Br₂ in D₆-DMSO.

Fig. S10¹H-NMR spectrum of a mixture of *syn/anti-*[5]Br₂ in CDCl₃.

Fig. S11 ${}^{13}C{}^{1}H$ -NMR spectrum of a mixture of *syn/anti-*[**5**]Br₂ in CDCl₃.

Fig. S12 ¹H-NMR spectrum of $[6]Br_2$ in CD₃OD.

Fig. S13 $^{13}C{^{1}H}$ -NMR spectrum of [6]Br₂ in CD₃OD.

Fig. S14 ¹H-NMR spectrum of [7]Br₂ in CD₃OD.

Fig. S15 $^{13}C{^{1}H}$ -NMR spectrum of [7]Br₂ in CD₃OD.

Fig. S16 ¹H-NMR spectrum of [9]Br₂ in CD₃OD.

Fig. S17 $^{13}C{^{1}H}$ -NMR spectrum of [9]Br₂ in CD₃OD.

Fig. S18 ¹H-NMR spectrum of $[10]Br_2$ in CD₃OD.

Fig. S19 $^{13}C{^{1}H}$ -NMR spectrum of [10]Br₂ in CD₃OD.

Fig. S20 ¹H-NMR spectrum of $[11]I_2$ in CD₃OD.

Fig. S21 $^{13}C{^{1}H}$ -NMR spectrum of [11]I₂ in CD₃OD.

Fig. S22 ¹H-NMR spectrum of $[12](PF_6)_4$ in CD₃CN.

Fig. S23 ${}^{13}C{}^{1}H$ -NMR spectrum of [**12**](PF₆)₄ in CD₃CN.

Fig. S24 1 H-NMR spectrum of [**13**](PF₆)₄ in CD₃CN.

Fig. S25 ${}^{13}C{}^{1}H$ -NMR spectrum of [**13**](PF₆)₄ in CD₃CN.

Fig. S26 ¹H-NMR spectrum of $[14](PF_6)_4$ in CD₃CN.

Fig. S27 $^{13}C{^{1}H}$ -NMR spectrum of [14](PF₆)₄ in CD₃CN.

Fig. S28 ¹H-NMR spectrum of $[15](PF_6)_8$ in CD₃CN.

Fig. S29 ${}^{13}C{}^{1}H$ -NMR spectrum of [15](PF₆)₈ in CD₃CN.

Fig. S30 ¹H-NMR spectrum of $[17](BF_4)_4$ in CD₃CN.

Fig. S32 ¹H-NMR spectrum of $[18](BF_4)_8$ in CD₃CN.

Fig. S33 ${}^{13}C{}^{1}H$ -NMR spectrum of [**18**](BF₄)₈ in CD₃CN.

Fig. S34 ¹H-NMR spectrum of $[19](BF_4)_8$ in CD₃CN.

Fig. S35 $^{13}C{^{1}H}$ -NMR spectrum of [19](BF₄)₈ in CD₃CN.

Fig. S36 ¹H-NMR spectrum of $[20](BF_4)_8$ in CD₃CN.

Fig. S37 ${}^{13}C{}^{1}H$ -NMR spectrum of [20](BF₄)₈ in CD₃CN.