Electronic Supplementary Information (ESI)

Experimental

General	S2
Synthesis of complex 1	S2
Synthesis of complexes 2	S 3
Synthesis of complexes 3	S4
Synthesis of complex 4	S 6
Synthesis of complexes 5 and 6	S 7
Synthesis of complex 7	S 8
Synthesis of complex 8	S 9
X-ray crystal structure determination	S 10

Experimental Section

General. When not stated, the reactions were carried out without precautions to exclude light or atmospheric oxygen or moisture. Melting points were determined on a Reichert apparatus and are uncorrected. Elemental analyses were carried out with a Carlo Erba 1106 microanalyzer. IR spectra were recorded on a Perkin-Elmer Spectrum 100 spectrophotometer using Nujol mulls between polyethylene sheets. NMR spectra were recorded in Bruker Avance, 200, 300 or 400 MHz, NMR spectrometers. The NMR assignments were performed, in some cases, with the help of APT, HMQC and HMBC experiments. Chart 1 shows the atom numbering used in the NMR assignments. [CICH₂pyH-2]Cl (Lancaster), CICH₂SMe, C₅H₄NMe-4 (pic), PTol₃, xylylisocyanide (XyNC), AgTfO, HTfO (Fluka), 4,4'-di-tertbutyl-2,2'-bipyridine (tbbpy), K^tBuO, AgClO₄, AgAcO (Aldrich), NaAcO (Sigma), MeCN (Carlo Erba), dimethylacetylenedicarboxylate (DMAD (Alfa Aesar) were obtained from commercial sources. The oxime C₆H₅C(NH₂)=NOH (**A**) was prepared as described in the literature.⁵ The complex [Pd{*C*,*N*-C₆H₄{C(NH₂)=NOH}-2}(μ -Cl)]₂ (**1**) was previously reported but we include here its IR and NMR spectral data which were poorly described. The solvents were distilled before use.

Synthesis of $[Pd{C,N-C_6H_4{C(NH_2)=NOH}-2}(\mu-Cl)]_2$ (1). A suspension containing PdCl₂ (360 mg, 2.03 mmol) and LiCl (175 mg, 4.12 mmol) in MeOH (6 mL) was refluxed for 40 min and then allowed to cool at room temperature. To the resulting red solution was added another containing benzamidoxime (276 mg, 2.03 mmol) and NaAcO (167 mg, 2.03 mmol) in MeOH (5 mL), the reaction mixture was refluxed for 5 h, allowed to cool and filtered through a short pad of Celite. The solution was concentrated to 2 mL and H₂O (20 mL) was added. The suspension was filtered and the cream colored solid collected was extracted with a Et₂O/CH₂Cl₂ mixture (20/5 mL, 3 x 25 mL). The combined extracts were filterd through Celite, the solution was concentrated to 5 mL and n-pentane (20 mL) was added.

suspension was filtered and the solid collected was washed with n-pentane (2 x 5 mL) and dried, first by suction and then in an oven at 70 °C for 45 min ti give **1** as a yellowish-cream solid (278 mg, 1.00 mmol, 49%). Mp: 209 °C (decomp). ¹H NMR (d₆-acetone, 400 MHz, 25 °C) δ 6.89 (br, 2 H, NH₂), 6.98 (td, 1 H, H⁵, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 7.06 (td, 1 H, H⁴, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz), 7.30 (d, broad, 1 H, H⁶, ³J_{HH} = 8 Hz), 7.38 (dd, 1 H, H³, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 8.31 (br, 1 H, OH). ¹³C{¹H} NMR (d₆-acetone, 100 MHz, 25 °C) δ 124.2 (CH³), 125.2 (C⁴), 129.2 (C⁵), 133.7 (C⁶), 137.4 (C²), 148.6 (C¹), 164.2 (C⁷). IR (cm⁻¹): v(NH) + v(OH), 3469 br, 3382 br; v(C=N), 1668. Various bands in the 250-350 cm⁻¹ region impeded the unequivocal assignment of the v(PdCl) bands. Anal. Found: C, 30.40; H, 2.67; N, 10.40 Calcd for C₁₄H₁₄Cl₂N₄O₂Pd₂: C, 30.35; H, 2.55; N, 10.11.

Synthesis of *SP*-4-4-[Pd{*C*,*N*-C₆H₄{C(NH₂)=NOH}-2}Cl(L)] (L = PTol₃, Tol = C₆H₄Me-4 (2a); CNXy, Xy = C₆H₃Me₂-2,6 (2b), pic = C₅H₄NMe-4 (2c)). To a suspension of **1** (for **2a**, 62 mg, 0.22 mmol; for **2b**, 103 mg, 0.37 mmol; for **2c**, 65 mg, 0.24 mmol) in CH₂Cl₂ (5 mL) was added the equimolar amount of the appropriate ligand [for **2a**, solid PTol₃, 68 mg, 0.22 mmol; for **2b**, a solution of CNXy, 49 mg, 0.37 mmol, in CH₂Cl₂(5 mL), added dropwise; for **2c**, pic, 23 μ L, 0.24 mmol). The resulting solution was stirred for 30 min, filtered through a short pad of Celite, and concentrated almost to dryness. The residue was stirred with Et₂O (for **2a**, 20; for **2b**, 10 mL) or an Et₂O/n-pentane mixture (**2c**, 1:10, 11 mL) until a white or greenish (**2c**) suspension formed which was filtered. The solid collected was washed with Et₂O (2 mL) and dried by suction to give the title compound as a white solid (for **2a**, 109 mg, 0.19 mmol, 84%; for **2b**, 129 mg, 0.32 mmol, 92%). **2c** was recrystallized from CH₂Cl₂ and n-pentane and dried in an oven at 70 °C for 1 h to give a greenish-white powder (68 mg, 0.18 mmol, 78%). Crystals of **2a** suitable for an X-ray diffraction study grew from CDCl₃ and Et₂O by the liquid diffusion method.

2a: Mp: 238 °C (decomp). ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 2.36 (s, 9 H, Me,

Tol), 5.17 (s, br, 2 H, NH₂), 6.42 (ddd, 1 H, H⁶, ${}^{3}J_{HH} = 6$ Hz, ${}^{4}J_{HH} = 5.6$ Hz, ${}^{5}J_{HH} {}_{6} {}^{4}J_{HP} = 1$ Hz), 6.55 (td, 1 H, H⁵, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz), 6.93 (t, 1 H, H⁴, ${}^{3}J_{HH} = 8$ Hz), 6.96 (td, 1 H, H³, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz), 7.16 ("dd", *meta*-H, Tol, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HP} = 2$ Hz), 7.58 ("dd", *ortho*-H, Tol, ${}^{3}J_{HP} = 12$ Hz, ${}^{3}J_{HH} = 8$ Hz), 9.31 (d, 1 H, OH, ${}^{4}J_{HP} = 3$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR (75 MHz, CDCl₃, 25 °C) δ 21.5 (Me, Tol), 122.1 (C³), 123.8 (C⁴), 127.6 (d, *ipso*-C, Tol, ${}^{1}J_{CP} = 53$ Hz), 128.8 (C⁵), 128.9 (d, *meta*-C, Tol, ${}^{3}J_{CP} = 11$ Hz), 135.1 (d, *ortho*-C, Tol, ${}^{2}J_{CP} = 13$ Hz), 138.1 (d, C⁶, ${}^{3}J_{CP} = 11$ Hz), 138.3 (d, C², ${}^{3}J_{CP} = 1$ Hz), 141.0 (d, *para*-C, Tol, ${}^{4}J_{CP} = 2$ Hz), 150.5 (C¹), 157.7 (C⁷). ${}^{31}P\{{}^{1}H\}$ NMR (121 MHz, CDCl₃, 25 °C) δ 40.2. IR (cm⁻¹): v(NH) + v(OH), 3479, 3315, 3260; v(C=N), 1675; v(PdCl), 298. Anal. Found: C, 57.65; H, 5.19; N, 5.16 Calcd for C₂₈H₂₈ClN₂OPPd: C, 57.85; H, 4.85; N, 4.82.

2b: Mp: 105 °C. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 2.53 (s, 6 H, Me, Xy), 5.30 (s, br, 2 H, NH₂), 7.07 (t, 1 H, H⁵, ³J_{HH} = 7 Hz), 7.08 (d, 1 H, H³, ³J_{HH} = 7 Hz), 7.13 (d, 1 H, H⁴, ³J_{HH} = 7 Hz), 7.17 (d, 2 H, *meta*-Xy, ³J_{HH} = 8 Hz), 7.29 (t, 1 H, *para*-Xy, ³J_{HH} = 8 Hz), 7.34 (d, 1 H, H⁶, ³J_{HH} = 8 Hz), 8.66 (s, 1 H, OH). ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C) δ 18.9 (Me, Xy), 123.0 (C³), 124.8 (C⁴), 126.1 (br, *ipso*-Xy), 12.2 (*meta*-Xy), 130.0 (*para*-Xy), 130.3 (C⁵), 135.8 (*ortho*-Xy), 137.0 (C⁶), 150.2 (C¹), 158.7 (C⁷), C² not observed. IR (cm⁻¹): v(NH) + v(OH), 3468, 3352; v(C=N), 2188; v(C=N), 1676; v(PdCl), 286. Anal. Found: C, 47.00; H, 3.95; N, 10.05. Calcd for C₁₆H₁₆ClN₃OPd: C, 47.08; H, 3.95; N, 10.29.

2c: Mp: 134 °C. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 2.46 (s, 3 H, Me, pic), 5.20 (s, br, 2 H, NH₂), 6.29 (d, 1 H, H⁶, ³J_{HH} = 8 Hz), 6.94 (t, 1 H, H⁵, ³J_{HH} = 8 Hz), 7.00 (d, 1 H, H³, ³J_{HH} = 7 Hz), 7.04 (t, 1 H, H⁴, ³J_{HH} = 7 Hz), 7.25 (d, 2 H, *meta*-H, pic, ³J_{HH} = 6 Hz), 8.59 (s, 1 H, OH), 8.69 (d, 2 H, *ortho*-H, pic, ³J_{HH} = 6 Hz). ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C) δ 21.3 (Me, pic), 122.2 (C³), 124.3 (C⁴), 126.4 (*meta*-pic, 129.2(C⁵), 131.4 (C⁶), 137.4 (C²), 149.9 (*para*-pic), 150.4 (C¹), 152.4 (*ortho*-pic), 157.7 (C⁷). IR (cm⁻¹): v(NH) + v(OH), 3462, 3304; v(C=N), 1660; v(PdCl), 297. Anal. Found: C, 41.84; H, 3.72; N, 11.01 Calcd for

C₁₃H₁₄ClN₃OPd: C, 42.19; H, 3.81; N, 11.35.

Synthesis of $[Pd\{C,N-C_6H_4\{C(NH_2)=NOH\}-2\}(L_2)]ClO_4$ (L = NC₅H₄Me-4, pic (3a); L₂ = 4,4'-di-*tert*-buthyl-bipyridine, tbbpy (3b)). To a suspension of 1 (for 3a, 106 mg, 0.38 mmol; for 3b, 137 mg, 0.49 mmol) in CH₂Cl₂ (15 mL) was added the appropriate ligand (for 3a, pic, 80 µL, 0.76 mmol; for 3b, tbbpy, 133 mg, 0.49 mmol) and excess NaClO₄·H₂O (100 mg, 0.71 mmol). The reaction mixture was stirred for 30 min, concentrated under vacuum to dryness, the residue was stirred with CH₂Cl₂ (20 mL) and the suspension was filtered. The filtrate was concentrated under vacuum to 1 mL and Et₂O (20 mL) was added. The suspension was filtered, the solid collected was washed with Et₂O (2 x 3 mL) and dried by suction to give 3b as a yellow solid (270 mg, 0.44 mmol, 90%) or an off white solid which was recrystallized from CH₂Cl₂ and Et₂O and dried in an oven at 75 °C for 30 min to give 3a as greenish-white solid (144 mg, 0.27 mmol, 72%).

3a: Mp: 173 °C (decomp). ¹H NMR (d₆-acetone, 400 MHz, 25 °C) δ 2.39 (s, 3 H, Me, pic), 2.47 (s, 2H, Me, pic), 6.12 (d, 1 H, H⁶), 6.95 (td, 1 H, H⁵, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz), 7.11 (td, 1 H, H⁴, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz), 7.21 (s, br, 2 H, NH₂), 7.39 (d, 2 H, *meta*-pic, ³J_{HH} = 6 Hz), 7.53 (d, 2 H, *meta*-pic, ³J_{HH} = 6 Hz), 7.58 (dd, 1 H, H³, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz), 8.53 (s, 1 H, OH), 8.65 (d, 2 H, *ortho*-pic, ³J_{HH} = 6 Hz), 8.88 (d, 2 H, *ortho*-pic, ³J_{HH} = 6 Hz). ¹³C{¹H} NMR (d₆-acetone, 100 MHz, 25 °C) δ 21.0 (Me, pic), 21.1 (Me, pic), 124.5 (C³), 125.6 (C⁴), 127.1 (*meta*-pic), 128.3 (*meta*-pic), 130.3 (C⁵), 133.4 (C⁶), 138.0 (C²), 151.1 (*ortho*-pic), 151.9 (br, *para*-pic), 152.0 (C¹), 152.6 (*ortho*-pic), 152.8 (*para*-pic), 170.0 (C⁷). $\Lambda_{\rm M}$ (Ω^{-1} cm²mol⁻¹) = 138 (5.08 x 10⁻⁴ M in acetone). IR (cm⁻¹): v(NH) + v(OH), 3481, 3361; v(C=N), 1647, v(ClO) 1094, δ (OClO) 624. Anal. Found: C, 43.14; H, 3.92; N, 10.29. Calcd for C₁₉H₂₁ClN₄O₅Pd: C, 43.28; H, 4.01; N, 10.63.

3b: Mp: 259 °C (decomp). H NMR (d₆-acetone, 300 MHz, 25 °C) δ 1.42 (s, 9 H, Me, tbbpy), 1.46 (s, 9 H, tbbpy), 2.90 (s, br, 2 H, NH₂), 7.09-7.14 (m, 2 H, Ar), 7.22 (s, br, 1 H),

7.35 (s, br, 1H), 7.48 (s, br, 1 H), 7.81 (m, 2 H, H⁵, tbbpy) 8.53 (s, 1H, H³, tbbpy), 8.54 (s, 1H, H³, tbbpy), 8.83 (d, 1 H, H⁶, tbbpy, ${}^{3}J_{HH} = 5$ Hz), 9.28 (d, 1 H, H⁶, tbbpy, ${}^{3}J_{HH} = 4$ Hz). ${}^{13}C{}^{1}H{}$ NMR (d₆-acetone, 75 MHz, 25 °C) δ 30.4 (Me, tbbpy), 36.3 (*C*Me₃), 36.4 (*C*Me₃), 120.8 (CH, tbbpy), 121.8 (CH), 124.4 (CH, tbbpy), 125.0 (CH), 150.9 (CH) 152.5 (CH, tbbpy), 154.8(C⁴, tbbpy), 157.3 (C^{ft}), 165.5 (C², tbbpy), 165.7 (C⁷), C¹ and C² not observed. $\Lambda_{M} (\Omega^{-1}cm^{2}mol^{-1}) = 131$ (4. 99 x 10⁻⁴M in acetone). IR (cm⁻¹): v(NH) + v(OH), 3483, 3352; v(C=N), 1642, v(ClO) 1098, δ (OClO) 624. Anal. Found: C, 49.11; H, 4.83; N, 9.14. Calcd for C₂₅H₃₁ClN₄O₅Pd: C, 49.27; H, 5.13; N, 9.19.

Synthesis of PPN[Pd{ $C,N-C_6H_4$ {C(NH₂)=NOH}-2}Cl₂] (PPN = Ph₃P=N=PPh₃ (4)). To a suspension of 1 (55 mg, 0.20 mmol) in CH₂Cl₂ (15 mL) was added the equimolar amount of [PPN]Cl (113 mg). An almost clear solution formed which was stirred for 2.5 h and filtered through a short pad of Celite. The filtrate was concentrated under vacuum to 1 mL and Et₂O (20 mL) was added. A suspension formed which was filtered, the solid was washed with Et₂O (2 x 3 mL) and dried, first by suction, and then in an oven at 75 °C for 2 h to give to give 4 as a pale tan solid (132 mg, 0.16 mmol, 78%). Mp: 240 °C (decomp). 1 H NMR (d₆-acetone, 400 MHz, 25 °C) δ 6.02 (s, br, 2 H, NH₂), 6.83 (ddd, 1 H, H⁵, ³J_{HH} = 7 Hz, ${}^{4}J_{HH} = 2$ Hz), 6.86 (ddd, 1H, H⁴, ${}^{3}J_{HH} = 7$ Hz, ${}^{4}J_{HH} = 2$ Hz), 7.14 (dd, 1 H, H³, ${}^{3}J_{HH} = 7$ Hz, ${}^{4}J_{HH} = 2$ Hz), 7.54-7.59 (m, 6 H, para-CH, PPN), 7.66-7.75 (m, 24 H, ortho + meta-CH, PPN), 7.80 (dd, 1 H, H⁶, ³J_{HH} = 7 Hz, ⁴J_{HH} = 2 Hz), 9.81 (s, 1 H, OH). (CD₂Cl₂, 400 MHz, 25 °C) δ 4.97 (s, br, 2 H, NH₂), 6.85 (m, 1 H, Ar), 6.93-6.99 (m, 2H, Ar), 7.46-7.51 (m, 24 H, ortho- + meta-PPN), 7.65-7.69 (m, 6 H, para-PPN), 7.69-7.71 (m, 1 H, Ar), 9.44 (s, br, 1 H, OH). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 25 °C) δ 121.4 (C³), 123.3 (C⁴), 127.4 (d, *ipso*-C, PPN, $J_{CP} = 108$ Hz), 128.4 (C⁵), 129.8 (m, ortho- or meta-C, PPN), 132.5 (m, ortho- or meta-C, PPN), 134.1 (*para*-C, PPN), 135.0 (C⁶), 137.6 (C²), 148.9 (C¹), 156.8 (C⁷), C²). ³¹P{¹H} NMR (121 MHz, d₆-acetone, 25 °C) δ 21.3. $\Lambda_{\rm M}$ (Ω^{-1} cm²mol⁻¹) = 108 (3.85 x 10⁻⁴M in acetone). IR (cm⁻¹): v(NH) + v(OH), 3461, 3315; v(C=N), 1672; v(PdCl), 268, 220. Anal. Found: C, 60.66; H, 4.40; N, 4.79. Calcd for C₄₃H₃₇Cl₂N₃OP₂Pd: C, 60.69; H, 4.38; N, 4.94.

Synthesis of $[Pd\{\mu-C, N, O-C_6H_4\{C(NH_2)=NO\}-2\}(PTol_3)]_2$ (5). To a solution of complex 2a (72 mg, 0.12 mmol) in degassed CH₂Cl₂ (10 mL), kept under nitrogen atmosphere, was added K^tBuO (16 mg, 0.14 mol). The resulting suspension was stirred for 4 h and then filtered in the air through a short pad of Celite. The solution was concentrated to 1 mL and n-hexane (20 q mL) was added and the solid washed with CH₂Cl₂ (4 x 20 mL). The combined filtrates were concentrated under vacuum to 1 mL and n-hexane (20 mL) was added. The suspension was filtered, the solid collected was recrystallized from CH₂Cl₂ (2 mL) and a 1:2 mixture of Et₂O and n-hexane (15 mL) and dried, first by suction and then in an oven at 70 °C for1 h to give 5 (61 mg, 0.11 mmol, 93%) as a yellow solid. Mp:206 °C. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 2.34 (s, 9 H, Me, Tol), 3.95 (s, br, 2 H, NH₂), 6.32 (td, 1 H, H^5 , ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz), 6.41 (dd, 1 H, H^6 , ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz), 6.71 (dd, 1 H, H^4 , ${}^3J_{HH} = 8$ Hz, ${}^4J_{HH} = 1$ Hz), 6.77 (t, 1 H, H³, ${}^3J_{HH} = 8$ Hz), 7.16 (d, meta-H, Tol, ${}^3J_{HH} = 7$ Hz), 7.58 ("dd", ortho-H, Tol, ${}^{3}J_{HP} = 11$ Hz, ${}^{3}J_{HH} = 8$ Hz). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃, 25 °C) δ 21.4 (Me, Tol), 120.6 (C³), 122.8 (C⁴), 125.4 (C⁵), 128.2 (d, *ipso*-C, Tol, ¹J_{CP} = 47 Hz), 129.1 (d, meta-C, Tol, ${}^{3}J_{CP} = 10$ Hz), 135.0 (d, ortho-C, Tol, ${}^{2}J_{CP} = 13$ Hz), 138.1 (d, C⁶, ${}^{3}J_{CP} = 11 \text{ Hz}$, 140.3 (C²), 141.4 (*para*-C, Tol), 153.2 (d, C¹, ${}^{2}J_{CP} = 5 \text{ Hz}$), 160.5 (C⁷). ${}^{31}P{}^{1}H{}$ NMR (121 MHz, CDCl₃, 25 °C) δ 36.7. IR (cm⁻¹): v(NH) 3480, 3348, v(C=N), 1603. Anal. Found: C, 61.73; H, 5.04; N, 4.96 Calcd for C₂₈H₂₇N₂OPPd: C, 61.72; H, 4.99; N, 5.14.

Synthesis of $[Pd\{C,N,N'-C_6H_4\{C(NH_2)=NOCH_2(C_5H_4N-2)\}-2\}(PTol_3)]ClO_4$ (6). To a mixture containing K^tBuO (21.2 mg, 0.19 mmol) and [ClCH₂pyH-2]Cl (15.5 mg, 0.09 mmol) in degassed CH₂Cl₂ (10 mL) was added, under N₂ atmosphere, another solution containing complex **2a** (54 mg, 0.09 mmol) in the same solvent (5 mL) and the mixture was stirred for 1 h. The solvent was removed under vacuum and acetone (10 mL) and

NaClO₄·H₂O (25 mg, 0.18 mmol) were successively added to the residue in the open air. The reaction mixture was stirred for 1 additional hour, and the solvent removed again under vacuum. The residue was stirred with CH₂Cl₂ (15 mL), the resulting suspension was filtered, the solution was concentrated to 1 mL and Et₂O (10 mL) was added. The suspension was stirred in an ice/water bath for a few min, and filtered. The solid collected was washed with Et₂O (2 mL) and dried, first by suction and then in an oven at 70 °C for 1 h to give 7 as a pale yellow solid (58 mg, 0.08 mmol, 88%). Crystals of **6** suitable for an X-ray diffraction study grew from CH₂Cl₂ and Et₂O by the liquid diffusion method. Mp: 295 °C (decomp). ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 2.35 (s, 9 H, Me, Tol), 5.19 (s, 2 H, CH₂), 6.45 (dd, 1 H, H⁶, ³J_{HH} = 8 Hz, ${}^{4}J_{HH} = 5$ Hz), 6.52 (s, br, 2 H, NH₂), 6.62 (t, 1 H, H⁵, ${}^{3}J_{HH} = 8$ Hz), 6.87 (t, 1 H, H¹², ${}^{3}J_{HH} = 7$ Hz), 7.04 (t, 1 H, H⁴, ${}^{3}J_{HH} = 8$ Hz), 7.16 (d, meta-H, Tol, ${}^{3}J_{HH} = 7$ Hz), 7.45 (d, 1 H, H^{3} , ${}^{3}J_{HH} = 8$ HZ), 7.49 (dd, *ortho*-H, Tol, ${}^{3}J_{HP} = 12$ Hz, ${}^{3}J_{HH} = 7$ Hz), 7.52 (d, 1 H, H^{10} , ${}^{3}J_{HH} = 7$ 7 Hz), 7.68 (d, 1 H, H^{13} , ${}^{3}J_{HH} = 7$ Hz), 7.78 (td, 1 H, H^{11} , ${}^{3}J_{HH} = 7$ Hz, ${}^{4}J_{HH} = 1$ Hz). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃, 25 °C) δ 21.4 (Me, Tol), 124.8 (C¹²), 125.1 (C³), 125.6 (C⁴), 125.9 (d, *ipso*-C, Tol, ${}^{1}J_{CP} = 52$ Hz), 126.7 (C¹⁰), 129.8 (d, *meta*-C, Tol, ${}^{3}J_{CP} = 11$ Hz), 129.9 (C⁵), 134.8 (d, *ortho*-C, Tol, ${}^{2}J_{CP} = 13$ Hz), 137.0 (d, C^{2} , ${}^{3}J_{CP} = 1$ Hz), 137.9 (d, C^{6} , ${}^{3}J_{CP} = 12$ Hz), 139.7 (C¹¹), 142.3 (d, *para*-C, Tol, ${}^{4}J_{CP} = 2$ Hz), 148.7 (d, C¹, ${}^{2}J_{CP} = 3$ Hz), 152.5 (d, C¹³, ${}^{3}J_{CP}$ = 3 Hz), 153.2 (C⁹) 163.8 (C⁷). ³¹P{¹H} NMR (121 MHz, CDCl₃, 25 °C) δ 39.9. IR (cm⁻¹): v(NH), 3486, 3368; v(C=N), 1654; v(ClO) 1080, δ (OClO) 621. Anal. Found: C, 55.46; H, 4.48; N, 5.64 Calcd for C₃₄H₃₃ClN₃O₅PPd: C, 55.45; H, 4.52; N, 5.71.

Synthesis of $[Pd\{C,N,-C(N=Xy)C_6H_4\{C(NH_2)=NOH\}-2\}Cl(CNXy)]$ (7). To a solution of 2b (85 mg, 0.21 mmol) in CH₂Cl₂ (15 mL) was dropwise added another solution of XyNC (27.3 mg, 0.21 mmol) in the same solvent (5 mL). After three days of stirring the solution was concentrated under vacuum to 10 mL and Et₂O (10 mL) was added. The suspension was filtered to remove a small amount of an yellow-orange solid the ¹H NMR of

which coincides with that of the Pd(I) complex [PdCl(CNXy)₂]₂,¹² the solution was concentrated (1 mL) and Et₂O (15 mL) was added. The suspension was filtered and the solid collected was washed with Et₂O (2 x 2 mL) and dried by suction to give 7 as a cream colored solid (25 mg, 0.04 mmol, 20%). When the mother liquor was further concentrated (5 mL) and Et₂O (15 mL) was added, a suspension formed which was filtered, dried (75 mg), and shown by ¹H NMR to contain a 1.3:1 mixture of **2b** and **7** which we could not separate. Mp: 196-198 °C (decomp). ¹H NMR (200 MHz, CDCl₃, 25°C): δ 2.12 (s, 6 H, Me, Xy^{Pd}), 2.28 (s, 6 H, Me, Xy^{im}), 5.65 (s, br, 2 H, NH₂), 6.81-6.89 (m, 3 H, meta-CH, Xy^{im} + para-CH, Xy^{im}), 7.02 (d, 2 H, meta-CH, Xy^{Pd} , ${}^{3}J_{HH} = 8$ Hz), 7.19 (dd, 1 H, Ar, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{HH} = 7$ Hz), 7.46-7.69 (m, 4 H, Ar + Xy), 9.54 (s, 1 H, OH). ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃, 25 °C) δ 18.6 (Me) 19.1(Me), 123.6 (para-CH, Xv^{im}), 125.5, (CH⁶), 126.5 (CH³), 127.1 (ortho-C, Xv^{im}), 127.3 (ipso-C, Xy^{Pd}), 127.7 (meta-CH, Xy^{Pd}), 127.9 (meta-CH, Xy^{im}), 129.1 (CH⁴), 129.6 (para-CH, Xy^{Pd}), 132.2 (CH⁵), 135.2 (*ortho*-C, Xy^{Pd}), 135.6 (C¹), 137.4 (C²), 149.7 (*ipso*-C, Xy^{im}), 150.9 (C⁷), 175.6 (C=NXy). IR (cm⁻¹): v(NH) + (OH), 3456, 3273, 3242; v(C=N) 2190, 2158 (sh); v(C=N), v(C=N), 1661, 1615. Anal. Found: C, 55.57; H, 4.81; N, 9.91. Calcd for C₂₅H₂₅ClN₄OPd: C, 55.67; H, 4.67; N, 10.39. Crystals of **7** suitable for an X-ray diffraction study grew by the liquid diffusion method, from a mixture 2b:7 dissolved in CH₂Cl₂ and layered with n-pentane.

Synthesis of [{Pd(tbbpy)}₂{ $C,N,N',O-C_6H_4$ {C(NH)=NO}-2}]ClO₄ (tbbpy = 4,4'-ditert-buthylbipyridine (8). To a solution of 3b (50 mg, 0.08 mmol) in acetone (5mL) were successively added tbbpy (22 mg, 0.08 mmol) and Pd(OAc)₂ (18 mg, 0.08 mmol). The solution turned redish within a few minutes and, after being stirred overnight, it was of purple-red color. It was filtered through a short pad of Celite, concentrated under vacuum to 1 mL and Et₂O (15 mL) was added. The suspension was filtered and the deep purple solid collected was washed with Et₂O (2 x 5 mL) and dried, first by suction and then in an oven at 80 °C overnight. Yield: 77 mg, 0.078 mmol, 96%, Mp: 257 °C. ¹H NMR (300 MHz, d₆-acetone, 25°C): δ 1.36 (s, 9 H, Me, ¹Bu), 1.43 (s, 9 H, Me, ¹Bu), 1.45 (s, 9 H, Me, ¹Bu), 1.49 (s, 9 H, Me, ¹Bu), 2.80 (s, 1 H), 2.84 (H₂O), 6.96 (m, 2 H), 7.25 (m, 2 H), 7.55 (a, br, 1 H), 7.82 (d, 1 H, ³J_{HH} = 5 Hz), 7.89 (s, 1 H), 7.97 (s, 1 H), 8.49 (s, 2 H, tbbpy), 8.59 (s, 2 H, tbbpy), 8.80 (s, vbr, 1 H), 8.90 (s, br, 1 H), 8.99 (d, 1 H, ³J_{HH} = 5 Hz), 10.09 (s, vbr, 1 H). ¹³C{¹H} NMR (75 MHz, d₆-acetone, 25 °C) δ 30.4 (Me, ¹Bu), 30.5 (Me, ¹Bu, double intensity), 30.6 (Me, ¹Bu), 36.3 (*C*Me₃, double intensity), 36.4 (*C*Me₃), 36.5 (*C*Me₃), 120.3 (CH), 120.9 (CH), 121.2 (CH), 121.4 (CH), 122.2 (CH), 122.3 (CH), 124.3 (CH), 124.7 (CH), 124.8 (CH), 125.1 (CH), 125.2 (CH), 127.0 (CH), 130.9 (CH), 136.9 (CH), 149.3 (CH), 149.64 (C), 149.67 (C), 149.70 (C), 152.0 (CH), 152.1 (CH), 152.4 (CH), 154.9 (C, tbbpy), 165.06 (C, tbbpy), 165.13 (C, tbbpy). 1R (cm⁻¹): v(NH), 3379; v(C=N) 1616, v(CIO) 1095, δ (OCIO) 623. Anal. Found: C, 52.37; H, 5.47; N, 8.48. Calcd for C₄₃H₅₃CIN₆O₅Pd₂: C, 52.58; H, 5.44; N, 8.56. Λ_M (Ω⁻¹·cm²·mol⁻¹): 107 (3.06 x 0⁻⁴ M in acetone). Crystals of **8-solvents** grew by the liquid diffusion method using CH₂Cl₂ and Et₂O.

X-ray Crystallography. Compounds **2a**, **6** and **7** were measured on a Bruker Smart APEX machine and compound **8** on a Bruker D8Quest machine. Data were collected using monochromated Mo-K α radiation in w scan for compounds **2a**, **6** and **7** and monochromated Cu-K α radiation in w and φ scan forr **8** The structures were solved by direct methods. All were refined anisotropically on F². The methyl hydrogens were refined using a rigid groups and the other hydrogens were refined using a riding mode. The NH₂ and OH hydrogens were refined as free and with DFIX in compound **7** and **8** and SADI in compounds **2a** and **6**.

Special features: Compound **8** has one *tert*-butyl group disordered over two positions, ca 71:29% and a poorly-resolved region of residual electron density that could not be adequately modelled and so was "removed" using the program SQUEEZE, which is part of the PLATON

system. The void volume per cell was 1761.9 Å³, with a void electron count per cell of 421. This additional solvent was not taken into account when calculating derived parameters such as the formula weight, because the nature of the solvent was uncertain.

Figure 1. Layers parallel to the *ab* plane in **2a** formed through O-H···Cl, N-H···Cl, C-H···Cl and C-H···O hydrogen bonds.

Figure 2. Chains along the b axis in 7 formed through N-H···N hydrogen bonds

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2013

Table 1. Crystal data and structure refinement of complexes 2a, 6, 7 and 8.

Complex	2a	6	7	8
Formula	C ₂₈ H ₂₈ ClN ₂ OPPd	C44H33ClN3O5PPd	C ₂₅ H ₂₅ ClN ₄ OPd	$C_{43}H_{53}ClN_6O_5Pd_2$
Fw	581.34	736.45	539.34	982.16
Temperature (K)	100(2) K	100(2)	100(2)	100(2)
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	P 2(1)/n	P -1	P 2(1)/c	C 2/c
<i>a</i> (Å)	11.8915(8)	9.4517(9)	14.058(7)	25.9442(11)
<i>b</i> (Å)	15.4151(11)	11.4744(11)	11.058(5)	21.3161(9)
<i>c</i> (Å)	14.5332(11)	14.6828(14)	14.952(7)	20.3264(8)
α (deg)	90	101.775(2)	90	90
β (deg)	93.245(2)	93.311(2)	94.647(8)	121.104(2)
γ (deg)	90	94.011(2)	90	90
Volume (Å ³)	2659.8(3)	1550.8(3)	2316.7(19)	9625.0(7)
Ζ	4	2	4	8
$ ho_{ m calcd}(m Mg\ m^{-3})$	1.452	1.577	1.546	1.356
$\mu \ (\mathrm{mm}^{-1})$	0.881	0.784	0.941	6.907
<i>F</i> (000)	1184	752	1096	4016
crystal size (mm)	0.19x0.18x0.14	0.20x0.08x0.05	0.22 x 0.12 x 0.10	0.27 x 0.17 x 0.15
θ range (deg)	1.93 to 28.72	1.82 to 28.73	2.29 to 28.70	2.87 to 66.87
no. rflns coll	32031	19050	27358	84208
no. indep rflns / R_{int}	6463 / 0.0251	7303 / 0.0260	5603 / 0.0319	8527 / 0.0441
Transmission	0.8866 / 0.8137	0.9618 / 0.7404	0.9117 / 0.6295	0.2058 / 0.0733
restraints/parameters	1 / 322	1 / 417	3 / 305	505 / 525
Goodness of fit on F^2	1.066	1.039	1.047	1.179
<i>R</i> 1 (<i>I</i> >2σ(<i>I</i>))	0.0240	0.0274	0.0304	0.0703
wR2 (all reflns)	0.0636	0.0688	0.0776	0.1837
Larg. diff. peak/hole (e.Å ⁻³)	0.493 / -0.253	0.520 / -0.473	0.992 / -0.748	2.882 / -0.552

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013