Electronic Supplementary Information

Theoretical study on supramolecularly-caged positively charged iridium (III) 2-pyridyl azolate derivatives as blue emitters for light-emitting electrochemical cells

Xiaochun Qu^{a,b}, Yuqi Liu^b, Yanling Si^{b,c}, Xue Wu^{a,*} and Zhijian Wu^{b,*}

^a Department of Chemistry, College of Science, Yanbian University, Yanji, 133002, PR China.

^b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.

^c College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, PR China

	B3LYP	CAM-B3LYP	PEB0	B3PW91	O3LYP	Exp. ^a		
Bond Length								
Ir-N1	2.083	2.072	2.058	2.064	2.067	2.050		
Ir-C2	2.014	2.008	1.998	2.003	1.996	2.000		
Ir-N3	2.082	2.073	2.054	2.062	2.066	2.052		
Ir-C4	2.024	2.017	2.007	2.013	2.010	2.015		
Ir-N5	2.285	2.245	2.224	2.244	2.300	2.174		
Ir-N6	2.247	2.221	2.201	2.213	2.243	2.179		
N7-C8	1.436	1.433	1.427	1.430	1.436	1.432		
		Bond A	ngle					
N1-Ir-N3	173.27	172.86	172.75	172.99	174.83	172.66		
N2-Ir-N5	167.43	168.08	167.96	167.90	168.92	167.21		
C4-Ir-N6	175.92	175.88	176.36	176.58	177.11	177.89		
N1-Ir-C2	80.24	80.32	80.521	80.41	80.35	80.78		
N3-Ir-C4	80.03	80.10	80.28	80.18	80.15	80.04		
N5-Ir-N6	73.53	74.09	74.36	74.14	73.39	74.61		
N5-N7-C8	124.06	123.67	123.63	124.07	124.98	123.02		
		Dihedral	Angle					
ω2	-64.97	-66.66	-61.33	-62.971	-113.81	-51.92		
ω2= N5-N7-C8-C9								
^{<i>a</i>} Ref. 27								

Table S1 Selected bond distances (Å), bond angles (°) and dihedral angles (°) for **1a** in ground-state at B3LYP, CAM-B3LYP, PBE0, B3PW91 and O3LYP level of theory, respectively, along with the experimental data

		7a		7b
	Cal.	Exp. ^a	Cal.	Exp. ^a
]	Bond Length		
Ir-N1	2.058	2.046	2.056	2.030
Ir-C2	2.002	2.004	1.998	2.006
Ir-N3	2.057	2.047	2.056	2.032
Ir-C4	2.002	2.011	2.000	1.992
Ir-N5	2.162	2.126	2.155	2.124
Ir-N6	2.199	2.136	2.193	2.136
		Bond Angle		
N1-Ir-N3	173.45	172.79	173.51	174.27
N2-Ir-N5	172.17	174.62	172.51	173.61
C4-Ir-N6	171.8	171.01	172.3	172.49
N1-Ir-C2	80.40	80.65	80.54	80.19
N3-Ir-C4	80.41	80.20	80.48	79.82
N5-Ir-N6	74.29	75.45	74.48	75.28
^a Ref. 30				

Table S2 Selected bond distances (Å), bond angles (°) and dihedral angles (°) for **7a** and **7b** in ground-state at PBE0 level of theory, respectively, along with the experimental data

Table S3 Calculated intramolecular centroid-centroid distances (Å) for **1a-6a** and **1b-6b** at DFT/PBE0 level of theory

DITADE		19					
	1a	2a	3 a	4 a	5a	6a	
$R(S_0)$	3.890	4.181	4.126	4.158	4.135	3.927	
$R(T_1)$	3.847	3.852	3.827	3.979	4.138	3.784	
	1b	2b	3b	4b	5b	6b	
$R(S_0)$	3.795	4.061	3.969	4.038	3.977	3.882	
R (T ₁)	3.784	4.288	4.202	3.898	3.773	3.831	

19	29	39	49	59	69	79
14		Bond Le	ngth	cu	ŭ	
2 068	2 057	2 057	2 058	2 067	2 053	2 057
1 995	1 991	1 994	1 992	1 992	1 991	1 985
2 034	2 052	2 052	2 051	2.036	2 051	2 048
1 968	1 072	1 073	1 965	1 968	1 970	1 964
2 240	1.772	1.775	2 203	2 273	2 215	2 178
2.249	2.175	2.171	2.203	2.275	2.213	2.178
1 427	2.104	2.102	2.207	1 425	2.190	2.170
1.427	1.405	Dond A	1.402	1.423	1.405	-
172.00	175 77	175 72	175 A7	174 10	178 22	176 27
167.52	165.26	164.85	174 17	167.00	168.82	170.57
107.55	105.50	104.85	1/4.1/	107.09	100.05	164.05
1/0.19	1/4.50	1/4.10 Dihadral	104.40	170.03	1/4.00	104.03
1 27	0.02		Aligie 0.56	1 22	0.69	0.40
-1.57	0.92	0.94	0.30	-1.52	0.08	-0.40
0.15	2.20	1.91	0.48	-0.55	2.4/ 14.94	0.10
-2.77	-3.24	-11.80	-12.13	-0.98	14.84	15.80
-60.43	-30.29	-4/./1	-20.84	-54.07	19.69	-
1b	2b	3b	4b	5b	6b	7b
1b	2b	3b Bond Le	4b	5b	6b	7b
1b	2b	3b Bond Le 2.060	4b ength 2.059	5b	6b	7b 2.047
1b 2.065 1.992	2b 2.058 1.997	3b Bond Le 2.060 1.999	4b ength 2.059 1.996	5b 2.053 1.997	6b 2.051 1.995	7b 2.047 1.965
1b 2.065 1.992 2.028	2b 2.058 1.997 2.052	3b Bond Le 2.060 1.999 2.050	4b ength 2.059 1.996 2.051	5b 2.053 1.997 2.048	6b 2.051 1.995 2.050	7b 2.047 1.965 2.054
1b 2.065 1.992 2.028 1.985	2b 2.058 1.997 2.052 2.004	3b Bond Le 2.060 1.999 2.050 2.002	4b ength 2.059 1.996 2.051 1.971	5b 2.053 1.997 2.048 1.983	6b 2.051 1.995 2.050 1.975	7b 2.047 1.965 2.054 1.991
1b 2.065 1.992 2.028 1.985 2.230	2b 2.058 1.997 2.052 2.004 2.231	3b Bond Le 2.060 1.999 2.050 2.002 2.215	4b ength 2.059 1.996 2.051 1.971 2.201	5b 2.053 1.997 2.048 1.983 2.163	6b 2.051 1.995 2.050 1.975 2.196	7b 2.047 1.965 2.054 1.991 2.180
1b 2.065 1.992 2.028 1.985 2.230 2.201	2b 2.058 1.997 2.052 2.004 2.231 2.171	3b Bond Le 2.060 1.999 2.050 2.002 2.215 2.170	4b ength 2.059 1.996 2.051 1.971 2.201 2.192	5b 2.053 1.997 2.048 1.983 2.163 2.175	6b 2.051 1.995 2.050 1.975 2.196 2.177	7b 2.047 1.965 2.054 1.991 2.180 2.169
1b 2.065 1.992 2.028 1.985 2.230 2.201 1.428	2b 2.058 1.997 2.052 2.004 2.231 2.171 1.450	3b Bond Le 2.060 1.999 2.050 2.002 2.215 2.170 1.449	4b ength 2.059 1.996 2.051 1.971 2.201 2.192 1.387	5b 2.053 1.997 2.048 1.983 2.163 2.175 1.404	6b 2.051 1.995 2.050 1.975 2.196 2.177 1.400	7b 2.047 1.965 2.054 1.991 2.180 2.169
1b 2.065 1.992 2.028 1.985 2.230 2.201 1.428	2b 2.058 1.997 2.052 2.004 2.231 2.171 1.450	3b Bond Le 2.060 1.999 2.050 2.002 2.215 2.170 1.449 Bond A	4b ength 2.059 1.996 2.051 1.971 2.201 2.192 1.387 ngle	5b 2.053 1.997 2.048 1.983 2.163 2.175 1.404	6b 2.051 1.995 2.050 1.975 2.196 2.177 1.400	7b 2.047 1.965 2.054 1.991 2.180 2.169
1b 2.065 1.992 2.028 1.985 2.230 2.201 1.428 173.75	2b 2.058 1.997 2.052 2.004 2.231 2.171 1.450 173.01	3b Bond Le 2.060 1.999 2.050 2.002 2.215 2.170 1.449 Bond A 173.09	4b ength 2.059 1.996 2.051 1.971 2.201 2.192 1.387 ngle 174.37	5b 2.053 1.997 2.048 1.983 2.163 2.175 1.404 176.90	6b 2.051 1.995 2.050 1.975 2.196 2.177 1.400 177.68	7b 2.047 1.965 2.054 1.991 2.180 2.169 -
1b 2.065 1.992 2.028 1.985 2.230 2.201 1.428 173.75 169.09	2b 2.058 1.997 2.052 2.004 2.231 2.171 1.450 173.01 168.91	3b Bond Le 2.060 1.999 2.050 2.002 2.215 2.170 1.449 Bond A 173.09 168.79	4b ength 2.059 1.996 2.051 1.971 2.201 2.192 1.387 ngle 174.37 166.07	5 b 2.053 1.997 2.048 1.983 2.163 2.175 1.404 176.90 169.92	6b 2.051 1.995 2.050 1.975 2.196 2.177 1.400 177.68 170.09	7b 2.047 1.965 2.054 1.991 2.180 2.169 - 176.32 172.21
1b 2.065 1.992 2.028 1.985 2.230 2.201 1.428 173.75 169.09 176.56	2b 2.058 1.997 2.052 2.004 2.231 2.171 1.450 173.01 168.91 176.83	3b Bond Le 2.060 1.999 2.050 2.002 2.215 2.170 1.449 Bond A 173.09 168.79 177.43	4b ength 2.059 1.996 2.051 1.971 2.201 2.192 1.387 ngle 174.37 166.07 174.45	5 b 2.053 1.997 2.048 1.983 2.163 2.175 1.404 176.90 169.92 175.98	6b 2.051 1.995 2.050 1.975 2.196 2.177 1.400 177.68 170.09 174.45	7b 2.047 1.965 2.054 1.991 2.180 2.169 - 176.32 172.21 162.85
1b 2.065 1.992 2.028 1.985 2.230 2.201 1.428 173.75 169.09 176.56	2b 2.058 1.997 2.052 2.004 2.231 2.171 1.450 173.01 168.91 176.83	3b Bond Le 2.060 1.999 2.050 2.002 2.215 2.170 1.449 Bond A 173.09 168.79 177.43 Dihedral	4b ength 2.059 1.996 2.051 1.971 2.201 2.192 1.387 ngle 174.37 166.07 174.45 Angle	5 b 2.053 1.997 2.048 1.983 2.163 2.175 1.404 176.90 169.92 175.98	6b 2.051 1.995 2.050 1.975 2.196 2.177 1.400 177.68 170.09 174.45	7b 2.047 1.965 2.054 1.991 2.180 2.169 - 176.32 172.21 162.85
1b 2.065 1.992 2.028 1.985 2.230 2.201 1.428 173.75 169.09 176.56 -1.13	2b 2.058 1.997 2.052 2.004 2.231 2.171 1.450 173.01 168.91 176.83 -1.15	3b Bond Le 2.060 1.999 2.050 2.002 2.215 2.170 1.449 Bond A 173.09 168.79 177.43 Dihedral -1.07	4b ength 2.059 1.996 2.051 1.971 2.201 2.192 1.387 ngle 174.37 166.07 174.45 Angle -0.09	5 b 2.053 1.997 2.048 1.983 2.163 2.175 1.404 176.90 169.92 175.98 0.64	6b 2.051 1.995 2.050 1.975 2.196 2.177 1.400 177.68 170.09 174.45 0.463	7b 2.047 1.965 2.054 1.991 2.180 2.169 - 176.32 172.21 162.85 0.10
1b 2.065 1.992 2.028 1.985 2.230 2.201 1.428 173.75 169.09 176.56 -1.13 -0.83	2b 2.058 1.997 2.052 2.004 2.231 2.171 1.450 173.01 168.91 176.83 -1.15 0.11	3b Bond Le 2.060 1.999 2.050 2.002 2.215 2.170 1.449 Bond A 173.09 168.79 177.43 Dihedral -1.07 0.29	4b ength 2.059 1.996 2.051 1.971 2.201 2.192 1.387 ngle 174.37 166.07 174.45 Angle -0.09 -0.95	5 b 2.053 1.997 2.048 1.983 2.163 2.175 1.404 176.90 169.92 175.98 0.64 -0.39	6b 2.051 1.995 2.050 1.975 2.196 2.177 1.400 177.68 170.09 174.45 0.463 1.19	7b 2.047 1.965 2.054 1.991 2.180 2.169 - 176.32 172.21 162.85 0.10 0.99
1b 2.065 1.992 2.028 1.985 2.230 2.201 1.428 173.75 169.09 176.56 -1.13 -0.83 -2.07	2b 2.058 1.997 2.052 2.004 2.231 2.171 1.450 173.01 168.91 176.83 -1.15 0.11 -0.50	3b Bond Lee 2.060 1.999 2.050 2.002 2.215 2.170 1.449 Bond A 173.09 168.79 177.43 Dihedral -1.07 0.29 7.80	4b ength 2.059 1.996 2.051 1.971 2.201 2.192 1.387 ngle 174.37 166.07 174.45 Angle -0.09 -0.95 -11.32	5 b 2.053 1.997 2.048 1.983 2.163 2.175 1.404 176.90 169.92 175.98 0.64 -0.39 8.89	6b 2.051 1.995 2.050 1.975 2.196 2.177 1.400 177.68 170.09 174.45 0.463 1.19 13.95	7b 2.047 1.965 2.054 1.991 2.180 2.169 - 176.32 172.21 162.85 0.10 0.99 -17.83
	1a 2.068 1.995 2.034 1.968 2.249 2.221 1.427 173.90 167.53 176.19 -1.37 0.15 -2.77 -60.43	1a2a 2.068 2.057 1.995 1.991 2.034 2.052 1.968 1.972 2.249 2.175 2.221 2.184 1.427 1.465 173.90 175.77 167.53 165.36 176.19 174.30 -1.37 0.92 0.15 2.20 -2.77 -3.24 -60.43 -50.29	1a2a3aBond Le2.0682.0572.0571.9951.9911.9942.0342.0522.0521.9681.9721.9732.2492.1752.1712.2212.1842.1821.4271.4651.464Bond A173.90175.77175.73167.53165.36164.85176.19174.30174.10Dihedral-1.370.920.940.152.201.91-2.77-3.24-11.86-60.43-50.29-47.71	1a2a3a4aBond Length2.0682.0572.0572.0581.9951.9911.9941.9922.0342.0522.0522.0511.9681.9721.9731.9652.2492.1752.1712.2032.2212.1842.1822.2071.4271.4651.4641.402Bond Angle173.90175.77175.73175.33165.36164.85174.17167.53165.36164.85174.17176.19174.30174.10164.46Dihedral Angle-1.370.920.940.560.152.201.910.48-2.77-3.24-11.86-12.13-60.43-50.29-47.71-20.84	1a2a3a4a5aBond Length2.0682.0572.0572.0582.0671.9951.9911.9941.9921.9922.0342.0522.0522.0512.0361.9681.9721.9731.9651.9682.2492.1752.1712.2032.2732.2212.1842.1822.2072.2311.4271.4651.4641.4021.425Bond Angle173.90175.77175.73175.47174.10167.53165.36164.85174.17167.53165.36164.85174.17167.09176.19174.30174.10164.46176.05Dihedral Angle-1.370.920.940.56-1.320.152.201.910.48-0.33-2.77-3.24-11.86-12.13-0.98-60.43-50.29-47.71-47.71-20.84-54.07	1a2a3a4a5a6aBond Length2.0682.0572.0572.0582.0672.0531.9951.9911.9941.9921.9921.9912.0342.0522.0522.0512.0362.0511.9681.9721.9731.9651.9681.9702.2492.1752.1712.2032.2732.2152.2212.1842.1822.2072.2312.1901.4271.4651.4641.4021.4251.403Bond Angle173.90175.77175.73175.47174.10178.22167.53165.36164.85174.17167.09168.83176.19174.30174.10164.46176.05174.00Dihedral Angle-1.370.920.940.56-1.320.680.152.201.910.48-0.332.47-2.77-3.24-11.86-12.13-0.9814.84-60.43-50.29-47.71-20.84-54.0719.69

Table S4 Selected bond distances (Å), bond angles (°) and dihedral angles (°) for **1a-7a** and **1b-7b** in T_1 states at DFT/PBE0 level of theory

X=N (in 1a/1b and 4a-7a/4b-7b); X=C (in 2a-3a/2b-3b)

 $\Phi 1 = N1 - C_{ppy1} - C'_{ppy1} - C2; \ \Phi 2 = N3 - C_{ppy2} - C'_{ppy2} - C4; \ \omega 1 = N5 - C_{phazpy} - C'_{phazpy} - N6; \ \omega 2 = N5 - X7 - C8 - C9$

transition for	10	20	30	40	50	60	7.0
	Ia	2a	Ja	48	38	0a	/a
T . N1	0.010	0.001	Bond Le	ength	0.011	0.002	0.001
Ir-NI	0.010	0.001	0.002	0.001	0.011	-0.003	-0.001
Ir-C2	-0.003	-0.007	-0.006	-0.003	-0.003	-0.003	-0.017
Ir-N3	-0.020	-0.002	-0.003	-0.006	-0.021	-0.006	-0.009
Ir-C4	-0.038	-0.033	-0.034	-0.042	-0.038	-0.037	-0.037
Ir-N5	0.025	-0.069	-0.055	-0.048	0.036	-0.021	0.016
Ir-N6	0.019	-0.021	-0.015	-0.001	0.020	-0.019	-0.021
X7-C8	-0.000	-0.002	-0.004	-0.023	-0.001	-0.032	-
			Bond A	ngle			
N1-Ir-N3	1.14	2.96	3.02	2.54	1.08	4.17	2.92
C2-Ir-N5	-0.42	-2.75	-3.37	-2.90	-0.97	-0.78	-1.47
C4-Ir-N6	-0.16	-2.29	-1.97	-2.42	-0.30	-3.68	-7.75
			Dihedral	Angle			
Φ1	0.21	2.80	2.93	2.05	0.13	1.89	-1.95
Φ2	-0.16	1.72	1.45	0.39	-0.21	2.05	-1.31
ω1	-0.13	-1.00	-8.66	-7.76	-0.39	7.79	19.59
ω2	0.90	-1.03	5.04	25.68	2.76	-32.18	-
	1b	2b	3 b	4b	5b	6b	7b
			Bond Le	ength			
Ir-N1	0.008	0.000	0.003	-0.000	-0.005	-0.004	-0.008
Ir-C2	-0.003	0.001	0.001	0.004	0.003	0.003	-0.033
Ir-N3	-0.026	0.000	-0.002	-0.003	-0.007	-0.007	-0.002
Ir-C4	-0.019	0.003	-0.000	-0.032	-0.019	-0.029	-0.009
Ir-N5	0.024	0.008	0.009	-0.028	-0.047	-0.023	0.025
Ir-N6	0.007	-0.029	-0.022	-0.010	-0.032	-0.024	-0.024
X7-C8	-0.001	-0.018	-0.019	-0.039	-0.023	-0.036	-
			Bond A	ngle			
N1-Ir-N3	0.88	0.30	0.37	1.64	4.01	3.41	2.82
C2-Ir-N5	-0.11	-0.25	-0.34	-2.20	0.72	-0.30	-0.30
C4-Ir-N6	0.00	-0.14	0.77	-2.62	-0.44	-2.94	-9.44
			Dihedral	Angle			
Φ1	0.06	0.59	0.53	1.48	1.79	1.28	1.44
Φ2	-1.27	-0.28	-0.03	-0.89	-0.30	0.83	2.34
ω1	-0.69	1.24	10.62	-7.63	9.16	6.89	-21.90
ω2	3.32	19.30	20.09	33.00	92.50	-34.33	-

Table S5 Variations for bond distances (Å), bond angles (°) and dihedral angles (°) upon $S_0 \rightarrow T_1$ transition for **1a-7a** and **1b-7b**

X=N (in 1a/1b and 4a-7a/4b-7b); X=C (in 2a-3a/2b-3b)

 $\Phi 1 = N1 - C_{ppy1} - C'_{ppy1} - C2; \quad \Phi 2 = N3 - C_{ppy2} - C'_{ppy2} - C4; \quad \omega 1 = N5 - C_{phazpy} - C'_{phazpy} - N6; \quad \omega 2 = N5 - X7 - C8 - C9$

	1a	2a	3 a	4a	5a	6a	7a
			Bond I	Length			
Ir-N1	2.395	2.411	2.423	2.411	2.405	2.446	2.450
Ir-C2	2.024	1.997	2.023	1.988	1.988	1.994	1.985
Ir-N3	2.155	2.454	2.178	2.435	2.438	2.443	2.468
Ir-C4	2.013	1.976	2.013	1.980	1.985	1.993	1.986
Ir-N5	2.566	2.226	2.482	2.269	2.252	2.247	2.177
Ir-N6	2.232	2.254	2.234	2.247	2.251	2.232	2.219
X7-C8	1.423	1.467	1.466	1.423	1.425	1.433	173.76
			Bond	Angle			
N1-Ir-N3	147.37	172.71	146.28	173.92	174.38	176.42	167.47
C2-Ir-N5	174.89	175.06	172.99	175.65	175.37	176.24	169.70
C4-Ir-N6	143.69	161.32	141.84	162.13	164.07	167.85	-
			Dihedra	l Angle			
Φ1	0.34	-11.84	1.45	-10.54	-10.78	-8.44	4.82
Φ2	-7.85	-17.07	-6.88	-17.45	-17.24	2.74	11.59
ω1	9.39	-5.23	5.274	-7.32	-2.17	5.91	-1.79
ω2	-40.58	-50.30	-24.38	-42.35	-57.36	47.13	-
	1b	2b	3b	4b	5b	6b	7b
			Bond I	Length			
Ir-N1	2.481	2.474	2.426	2.226	2.361	2.414	2.435
Ir-C2	2.015	2.018	2.025	2.004	2.028	2.006	2.001
Ir-N3	2.199	2.183	2.165	2.546	2.128	2.423	2.421
Ir-C4	2.014	2.012	2.012	2.014	2.011	2.008	1.999
Ir-N5	2.331	2.362	2.443	2.230	2.610	2.228	2.164
Ir-N6	2.199	2.214	2.220	2.259	2.232	2.215	2.213
X7-C8	1.427	1.466	1.466	1.426	1.422	1.434	173.88
			Bond	Angle			
N1-Ir-N3	156.82	150.45	148.67	160.35	146.08	176.46	170.65
C2-Ir-N5	177.04	178.52	173.85	167.20	176.04	175.86	171.91
C4-Ir-N6	147.74	147.04	142.99	149.87	143.97	170.10	-
			Dihedra	l Angle			
Φ1	0.79	-0.48	1.80	-7.06	-0.04	-8.48	-10.27
Φ2	-8.75	-4.77	-6.42	-0.73	-6.96	0.16	-4.255
ω1	-2.80	7.36	5.19	-4.96	6.64	5.36	1.0684
ω2	-57.28	34.57	-32.14	-49.20	-35.30	50.88	-

Table S6 Selected bond distances (Å) and bond angles (°) for **1a-7a** and **1b-7b** in the metal-centered (³MC) triplet excited states at DFT/PBE0 level of theory

X=N (in 1a/1b and 4a-7a/4b-7b); X=C (in 2a-3a/2b-3b)

 $\Phi 1 = N1 - C_{ppy1} - C'_{ppy1} - C2; \ \Phi 2 = N3 - C_{ppy2} - C'_{ppy2} - C4; \ \omega 1 = N5 - C_{phazpy} - C'_{phazpy} - N6; \ \omega 2 = N5 - X7 - C8 - C9$

	MO	Energy	Contribu	ution			
		(eV)	phazpy	Ir	ppy2	ppy1	
1a	L+3	-3.66	87	1	4	9	π*(phazpy)
	L+2	-3.74	3	5	55	37	π* (ppy)
	L+1	-3.88	3	4	39	54	π* (ppy)
	L	-4.38	96	3	1	1	π*(phazpy)
	Н	-8.05	2	33	41	23	$5d + \pi(ppy)$
	H-1	-8.58	3	5	44	48	π (ppy)
	Н-2	-8.78	3	23	53	21	$5d+\pi(ppy)$
	Н-3	-8.94	6	21	12	61	$5d+\pi(ppy)$
2a	L+3	-3.68	1	5	66	29	π *(ppy)
	L+2	-3.82	4	4	28	64	$\pi^*(\text{ppy})$
	L+1	-3.92	93	1	1	4	$\pi^*(\text{phazpy})$
	L	-4.63	97	3	0	1	$\pi^*(\text{phazpy})$
	Н	-7.95	3	33	44	20	$5d + \pi(ppy)$
	H-1	-8.52	6	6	41	47	π (ppy)
	Н-2	-8.70	6	19	60	15	$5d+\pi(ppy)$
	Н-3	-8.90	15	13	5	67	$5d+\pi(ppy)+\pi(phazpy)$
3a	L+3	-3.58	2	5	64	29	$\pi^*(\text{ppy})$
	L+2	-3.67	85	1	8	6	$\pi^*(\text{phazpy})$
	L+1	-3.72	9	4	24	63	$\pi^*(\text{ppy})$
	L	-4.41	96	3	0	1	$\pi^*(\text{phazpy})$
	Н	-7.84	3	34	44	20	$5d + \pi(ppy)$
	H-1	-8.40	7	6	38	48	$\pi(\text{ppy})$
	H-2	-8.58	8	22	57	13	$5d+\pi(ppy)$
	H-3	-8.78	17	16	4	63	$5d+\pi(ppy)+\pi(phazpy)$
40	I ⊥2	2.85	86	1	2	11	m*(nhozny)
4 a	L+3 L+2	-3.05	30 7	5	2 52	36	π (pnazpy) $\pi^*(pny)$
	L+2 I+1	-4.01	5	5	32 40	50	$\pi^*(\text{ppy})$
	L	-4.66	95	3	1	1	$\pi^*(\text{ppy})$
	Н	-8 21	2	33	42	23	$5d + \pi(nny)$
	H_1	-8.73	3	5	44	48	$\pi(npy)$
	н.2	-8.93	2	16	61	22	$5d+\pi(nny)$
	H-3	-9.10	3	12	20	65	$5d + \pi(ppy)$ $5d + \pi(ppy)$
	11 5	2.10	2	12	20	00	ca (whb)
5a	L+3	-3.72	85	1	5	9	$\pi^*(\text{phazpy})$
	L+2	-3.85	3	5	44	48	$\pi^*(\text{ppy})$
	L+1	-3.98	2	5	49	44	$\pi^*(\text{ppy})$
	L	-4.54	96	3	1	1	$\pi^*(\text{phazpy})$

Table S7 Molecular orbital composition (%) and energy levels of 1a-7a in ground the state

H-8.162343926 $5d + \pi(ppy)$ H-1-8.71254548 $\pi(ppy)$ H-2-8.912195326 $5d + \pi(ppy)$ H-3-9.054152259 $5d + \pi(ppy)$ GaL+3-3.845622616 $\pi^*(phazpy) + \pi^*(ppy)$ L+2-3.93344584 $\pi^*(phazpy) + \pi^*(ppy)$ L+1-4.04351181 $\pi^*(phazpy)$ L-4.6696301 $\pi^*(phazpy)$ H-8.232343925 $5d + \pi(ppy)$ H-1-8.79234352 $\pi(ppy)$ H-2-8.991136323 $5d + \pi(ppy)$ H-3-9.104162358 $5d + \pi(ppy)$
H-1-8.71254548 $\pi(ppy)$ H-2-8.912195326 $5d+\pi(ppy)$ H-3-9.054152259 $5d+\pi(ppy)$ 6aL+3-3.845622616 $\pi^*(phazpy)+\pi^*(ppy)$ L+2-3.93344584 $\pi^*(phazpy)+\pi^*(ppy)$ L+1-4.04351181 $\pi^*(phazpy)$ L-4.6696301 $\pi^*(phazpy)$ H-8.232343925 $5d+\pi(ppy)$ H-1-8.79234352 $\pi(ppy)$ H-2-8.991136323 $5d+\pi(ppy)$ H-3-9.104162358 $5d+\pi(ppy)$
H-2-8.912195326 $5d+\pi(ppy)$ H-3-9.054152259 $5d+\pi(ppy)$ 6a L+3-3.845622616 $\pi^*(phazpy)+\pi^*(ppy)$ L+2-3.93344584 $\pi^*(phazpy)+\pi^*(ppy)$ L+1-4.04351181 $\pi^*(phazpy)$ L-4.6696301 $\pi^*(phazpy)$ H-8.232343925 $5d+\pi(ppy)$ H-1-8.79234352 $\pi(ppy)$ H-2-8.991136323 $5d+\pi(ppy)$ H-3-9.104162358 $5d+\pi(ppy)$
H-3-9.054152259 $5d+\pi(ppy)$ 6aL+3-3.845622616 $\pi^*(phazpy)+\pi^*(ppy)$ L+2-3.93344584 $\pi^*(phazpy)+\pi^*(ppy)$ L+1-4.04351181 $\pi^*(ppy)$ L-4.6696301 $\pi^*(phazpy)$ H-8.232343925 $5d+\pi(ppy)$ H-1-8.79234352 $\pi(ppy)$ H-2-8.991136323 $5d+\pi(ppy)$ H-3-9.104162358 $5d+\pi(ppy)$
6aL+3-3.845622616 $\pi^*(phazpy)+\pi^*(ppy)$ L+2-3.93344584 $\pi^*(phazpy)+\pi^*(ppy)$ L+1-4.04351181 $\pi^*(ppy)$ L-4.6696301 $\pi^*(phazpy)$ H-8.2323439255d+ $\pi(ppy)$ H-1-8.79234352 $\pi(ppy)$ H-2-8.9911363235d+ $\pi(ppy)$ H-3-9.1041623585d+ $\pi(ppy)$
6aL+3-3.845622616 $\pi^*(phazpy)+\pi^*(ppy)$ L+2-3.93344584 $\pi^*(phazpy)+\pi^*(ppy)$ L+1-4.04351181 $\pi^*(ppy)$ L-4.6696301 $\pi^*(phazpy)$ H-8.2323439255d+ $\pi(ppy)$ H-1-8.79234352 $\pi(ppy)$ H-2-8.9911363235d+ $\pi(ppy)$ H-3-9.1041623585d+ $\pi(ppy)$
L+2-3.93344584 $\pi^*(phazpy)+\pi^*(ppy)$ L+1-4.04351181 $\pi^*(ppy)$ L-4.6696301 $\pi^*(phazpy)$ H-8.232343925 $5d+\pi(ppy)$ H-1-8.79234352 $\pi(ppy)$ H-2-8.991136323 $5d+\pi(ppy)$ H-3-9.104162358 $5d+\pi(ppy)$
L+1-4.04351181 $\pi^*(ppy)$ L-4.6696301 $\pi^*(phazpy)$ H-8.232343925 $5d+\pi(ppy)$ H-1-8.79234352 $\pi(ppy)$ H-2-8.991136323 $5d+\pi(ppy)$ H-3-9.104162358 $5d+\pi(ppy)$
L-4.6696301 $\pi^*(\text{phazpy})$ H-8.232343925 $5d+\pi(\text{ppy})$ H-1-8.79234352 $\pi(\text{ppy})$ H-2-8.991136323 $5d+\pi(\text{ppy})$ H-3-9.104162358 $5d+\pi(\text{ppy})$
H-8.232343925 $5d + \pi(ppy)$ H-1-8.79234352 $\pi(ppy)$ H-2-8.991136323 $5d + \pi(ppy)$ H-3-9.104162358 $5d + \pi(ppy)$
H-1-8.79234352 π (ppy)H-2-8.991136323 $5d+\pi$ (ppy)H-3-9.104162358 $5d+\pi$ (ppy)
H-2-8.991136323 $5d+\pi(ppy)$ H-3-9.104162358 $5d+\pi(ppy)$
H-3 -9.10 4 16 23 58 5d+ π (ppy)
7a L+3 -3.84 2 4 25 69 $\pi^*(ppy)$
L+2 -3.92 1 5 69 25 $\pi^*(ppy)$
L+1 -4.15 96 1 2 1 $\pi^*(azpy)$
L -4.61 96 3 0 1 $\pi^*(azpy)$
H -8.11 2 33 30 36 $5d+\pi(ppy)$
H-1 -8.72 1 4 46 49 π(ppy)
H-2 -8.91 1 12 34 54 5d+ π (ppy)
H-3 -9.02 3 13 57 28 5d+π(ppy)

	MO	Energy	Contribu	ution			
		(eV)	phazpy	Ir	dfppy2	dfppy1	
1b	L+3	-3.85	87	1	5	8	$\pi^*(\text{phazpy})$
	L+2	-3.91	7	5	52	36	π* (ppy)
	L+1	-4.04	2	5	39	54	π* (ppy)
	L	-4.58	96	3	0	1	$\pi^*(\text{phazpy})$
	Н	-8.46	2	31	43	24	$5d+\pi(ppy)$
	H-1	-8.79	2	5	64	29	<i>π</i> (ppy)
	Н-2	-8.89	1	8	30	61	π (ppy)
	Н-3	-9.20	7	11	30	53	π (ppy)
2b	L+3	-3.85	1	5	68	26	π* (ppy)
	L+2	-3.98	2	4	26	68	π* (ppy)
	L+1	-4.11	96	1	1	2	$\pi^*(\text{phazpy})$
	L	-4.83	97	3	0	0	$\pi^*(\text{phazpy})$
	Н	-8.35	3	31	46	20	$5d+\pi(ppy)$
	H-1	-8.70	2	6	71	21	π (ppy)
	Н-2	-8.83	5	7	25	63	π (ppy)
	Н-3	-9.08	48	7	6	38	$\pi(\text{phazpy})+\pi(\text{ppy})$

3b	L+3	-3.74	2	5	69	25	π* (ppy)
	L+2	-3.86	85	1	7	7	$\pi^*(\text{phazpy})$
	L+1	-3.88	10	4	20	65	π* (ppy)
	L	-4.60	96	3	0	1	$\pi^*(\text{phazpy})$
	Н	-8.23	4	31	46	19	$5d + \pi(ppy)$
	H-1	-8.59	3	7	71	20	π (ppy)
	Н-2	-8.72	6	8	25	61	π (ppy)
	H-3	-8.94	50	8	5	38	π (phazpy)+ π (ppy)
4b	L+3	-4.04	65	2	12	21	$\pi^*(\text{phazpy})+\pi^*(\text{ppy})$
	L+2	-4.06	30	4	41	24	$\pi^*(\text{phazpy})+\pi^*(\text{ppy})$
	L+1	-4.18	3	5	41	51	π* (ppy)
	L	-4.85	96	3	1	1	$\pi^*(\text{phazpy})$
	Н	-8.61	2	29	45	24	$5d+\pi(ppy)$
	H-1	-8.92	2	5	65	28	π (ppy)
	Н-2	-9.04	1	7	30	61	π (ppy)
	H-3	-9.35	7	4	31	57	π (ppy)
5b	L+3	-3.91	89	1	4	6	$\pi^*(\text{phazpy})$
	L+2	-4.02	4	5	45	46	π* (ppy)
	L+1	-4.14	1	5	48	46	π* (ppy)
	L	-4.74	96	3	0	1	$\pi^*(\text{phazpy})$
	Н	-8.56	2	31	40	27	$5d+\pi(ppy)$
	H-1	-8.90	1	4	60	35	π (ppy)
	H-2	-9.00	1	8	35	57	π (ppy)
	H-3	-9.32	5	6	36	53	π (ppy)
6b	L+3	-4.02	46	2	38	13	$\pi^*(\text{phazpy})+\pi^*(\text{ppy})$
	L+2	-4.11	48	3	46	3	$\pi^*(\text{phazpy})+\pi^*(\text{ppy})$
	L+1	-4.20	3	5	9	83	π*(ppy)
	L	-4.86	96	3	0	1	$\pi^*(\text{phazpy})$
	Η	-8.63	2	30	43	25	$5d+\pi(ppy)$
	H-1	-9.00	1	4	58	38	π (ppy)
	H-2	-9.08	1	7	37	55	π (ppy)
	Н-3	-9.35	5	5	36	54	π (ppy)
7b	L+3	-4.01	2	4	69	25	π* (ppy)
	L+2	-4.11	1	5	25	69	π* (ppy)
	L+1	-4.35	96	1	1	1	$\pi^*(azpy)$
	L	-4.82	96	3	1	0	$\pi^*(azpy)$
	Н	-8.54	2	30	38	31	$5d+\pi(ppy)$
	H - 1	-8.91	0	4	60	36	π (ppy)
	H-2	-9.00	0	6	35	58	π (ppy)
	H-3	-9.34	2	4	44	50	π (ppy)

	State	E_{th}	λ_{cal}	λ_{ex}	f	Excitation	Character
		eV	nm	р		(contribution)	
				nm			
1a	\mathbf{S}_1	2.97	417.3	411	0.0021	H→L (98%)	MLCT/LLCT
	S_2	3.15	393.5	385	0.0489	H→L+1 (96%)	MLCT/ILCT
	S_5	3.62	342.6		0.0421	H-1→L (84%)	LLCT
	S_9	3.84	322.9		0.0518	H-3→L (66%)	MLCT/ILCT/LLCT
	\mathbf{S}_{13}	3.96	313.2		0.0389	H-3→L+1 (24%), H-2→L+2 (45%)	MLCT/ILCT
	\mathbf{S}_{16}	4.15	298.8		0.0690	H-4→L+2 (10%), H-3→L+2 (55%)	MLCT/ILCT/LLCT
	\mathbf{S}_{18}	4.23	293.4		0.0581	H-4→L+1 (61%), H-2→L+3 (13%)	MLCT/ILCT
	S_{20}	4.29	288.8		0.0624	H-6→L (27%), H-2→L+3 (48%)	MLCT/ILCT/LLCT
	S_{23}	4.36	284.3		0.0629	H-4→L+2 (32%), H-1→L+3 (13%)	MLCT/ILCT
	S_{24}	4.41	281.0		0.1674	H-6→L(27%), H-5→L+2(16%), H-1→L+3(16%)	MLCT/ILCT
	\mathbf{S}_{25}	4.45	278.3		0.0564	H-5→L+2 (50%), H-1→L+5 (11%)	MLCT/ILCT
	S_{27}	4.52	274.1		0.0342	H-3→L+3 (64%)	MLCT/ILCT/LLCT
	S_{28}	4.53	273.6		0.0418	H-2→L+4 (32%), H-1→L+4 (28%)	MLCT/ILCT
	\mathbf{S}_{29}	4.55	272.2		0.0376	H→L+7 (84%)	MLCT/ILCT/LLCT
	\mathbf{S}_{30}	4.59	269.9		0.0678	H-6→L+1 (75%)	ILCT/LLCT
	\mathbf{S}_{31}	4.63	267.6		0.1133	H-2→L+5 (38%), H-1→L+4 (15%)	MLCT/ILCT/LLCT
	S_{32}	4.66	265.9	256	0.3550	H-5→L+2 (12%), H-1→L+5 (40%)	MLCT/ILCT
	\mathbf{S}_{37}	4.78	259.4		0.0428	H-6→L+2 (13%), H-3→L+5 (55%)	MLCT/ILCT/LLCT
	S 39	4.91	252.3		0.0448	H-4→L+4 (43%), H→L+8 (19%)	MLCT/ILCT
	S_{42}	4.95	250.7		0.0751	H-4→L+4 (23%), H→L+8 (20%)	MLCT/ILCT/LLCT
	\mathbf{S}_{51}	5.12	242.1		0.1060	H-9→L (18%), H-8→L (27%), H-6→L+3 (19%)	MLCT/ILCT/LLCT
	\mathbf{S}_{57}	5.22	237.4		0.0326	H-3→L+6 (12%), H-2→L+11 (29%)	ILCT/LLCT
	\mathbf{S}_{58}	5.25	236.0		0.0726	H-6→L+4 (70%)	ILCT/LLCT
	T_1	2.76	448.9		0.0000	H-1→L+2 (16%), H→L+1 (55%)	MLCT/ILCT
	T_2	2.83	438.8		0.0000	H-1→L+1 (30%), H→L+2 (41%)	MLCT/ILCT
	T_3	2.95	420.3	411	0.0000	H→L (91%)	MLCT/LLCT
29	S.	2 82	439 5		0.0019	H→I (98%)	MI CT/LI CT
24	S ₁	3.12	398.0		0.0498	$H \to I + 1 (97\%)$	MLCT/LLCT
	S ₅	3 50	354.5		0.0392	$H_{-1} \rightarrow L(83\%)$	LLCT
	S7	3 73	332.6		0.0660	$H-4 \rightarrow L(71\%) H-3 \rightarrow L(10\%)$	MLCT/ILCT/LLCT
	Su	3 83	323.4		0 1663	$H-4 \rightarrow L(11\%), H-3 \rightarrow L(69\%), H-2 \rightarrow L(10\%)$	MLCT/ILCT/LLCT
	S12	3.90	318.1		0.0407	$H-1 \rightarrow L+2$ (69%)	MLCT/ILCT
	S 14	3.94	314.7		0.0772	$H-5 \rightarrow L (14\%), H-2 \rightarrow L+2 (44\%)$	MLCT/ILCT
	S ₁₈	4.14	299.4		0.0609	H-4→L+1 (13%), H-4→L+2 (46%)	MLCT/ILCT/LLCT
	S ₁₉	4.15	298.8		0.0396	H-4→L+1 (11%), H-3→L+1 (57%)	MLCT/ILCT/LLCT
	S ₂₀	4.19	295.6		0.0328	H-2→L+3(36%), H-1→L+3 (20%)	MLCT/ILCT
	S ₂₂	4.26	291.0		0.1250	H-5→L+1 (58%)	MLCT/ILCT
2a	$\begin{array}{c} {\bf S}_{1} \\ {\bf S}_{2} \\ {\bf S}_{5} \\ {\bf S}_{7} \\ {\bf S}_{11} \\ {\bf S}_{13} \\ {\bf S}_{14} \\ {\bf S}_{18} \\ {\bf S}_{19} \\ {\bf S}_{20} \\ {\bf S}_{22} \end{array}$	2.95 2.82 3.12 3.50 3.73 3.83 3.90 3.94 4.14 4.15 4.19 4.26	420.3 439.5 398.0 354.5 332.6 323.4 318.1 314.7 299.4 298.8 295.6 291.0	411	0.0000 0.0019 0.0498 0.0392 0.0660 0.1663 0.0407 0.0772 0.0609 0.0396 0.0328 0.1250	$\begin{array}{l} H \rightarrow L \ (91\%) \\ H \rightarrow L \ (98\%) \\ H \rightarrow L+1 \ (97\%) \\ H -1 \rightarrow L \ (83\%) \\ H -4 \rightarrow L \ (71\%), H -3 \rightarrow L \ (10\%) \\ H -4 \rightarrow L \ (11\%), H -3 \rightarrow L \ (69\%), H -2 \rightarrow L \ (10\%) \\ H -1 \rightarrow L +2 \ (69\%) \\ H -5 \rightarrow L \ (14\%), H -2 \rightarrow L +2 \ (44\%) \\ H -4 \rightarrow L +1 \ (13\%), H -4 \rightarrow L +2 \ (46\%) \\ H -4 \rightarrow L +1 \ (11\%), H -3 \rightarrow L +1 \ (57\%) \\ H -2 \rightarrow L +3 \ (36\%), H -1 \rightarrow L +3 \ (20\%) \\ H -5 \rightarrow L +1 \ (58\%) \end{array}$	MLCT/LLCT MLCT/LLCT LLCT MLCT/ILCT/LLCT MLCT/ILCT/LLCT MLCT/ILCT MLCT/ILCT MLCT/ILCT/LLCT MLCT/ILCT/LLCT MLCT/ILCT MLCT/ILCT

Table S9 Calculated excited energies, dominant orbital excitations, and oscillator strength (f) from PCM-TD -B3LYP calculations in CH₃CN media for **1a-7a**

	S ₂₄	4.33	286.6	0.0344	H-6→L+1 (17%), H-5→L+2(29%), H-1→L+4 (21%)	MLCT/ILCT
	S ₂₉	4.44	279.1	0.0312	H-6→L+2 (34%), H-2→L+4 (29%)	MLCT/ILCT
	S ₃₃	4.62	268.5	0.1567	H-1→L+4 (24%), H-1→L+5 (31%)	MLCT/ILCT
	S_{34}	4.64	267.3	0.2957	H-2→L+5 (26%), H-1→L+5 (12%)	MLCT/ILCT
	S ₃₆	4.70	263.7	0.0377	H-4→L+4 (54%), H-3→L+4 (11%)	MLCT/ILCT/LLCT
	S 39	4.77	260.0	0.0353	H-7→L+1 (13%), H-4→L+5 (43%)	MLCT/ILCT/LLCT
	S_{40}	4.78	259.5	0.0489	H-8→L (33%), H-4→L+4 (10%), H→L+7 (28%)	MLCT/ILCT/LLCT
	S_{42}	4.79	258.7	0.1689	H-3→L+4 (20%), H→L+7 (41%)	MLCT/ILCT
	S_{47}	4.94	250.8	0.2106	H-5→L+4 (12%), H→L+8 (45%)	MLCT/ILCT/LLCT
	T_1	2.74	452.4	0.0000	H-1→L+2 (11%), H→L (18%), H→L+1 (49%)	MLCT/ILCT/LLCT
	T_2	2.80	442.8	0.0000	H→L (51%), H→L+2 (23%)	MLCT/ILCT/LLCT
	T ₃	2.82	440.3	0.0000	H-1→L+1 (16%), H→L (28%),H→L+2 (24%)	MLCT/ILCT/LLCT
3a	\mathbf{S}_1	2.82	439.5	0.0023	H→L (98%)	MLCT/LLCT
	S_2	3.12	397.2	0.0476	H→L+1 (97%)	MLCT/ILCT
	S_5	3.49	355.1	0.0498	H-1→L (86%)	LLCT
	S_7	3.71	333.9	0.0777	H-4→L (66%), H-3→L (16%)	MLCT/ILCT/LLCT
	S ₁₁	3.84	322.6	0.1422	H-4→L (16%), H-3→L (65%)	MLCT/ILCT/LLCT
	S ₁₃	3.90	318.2	0.0386	H-1→L+2 (67%)	MLCT/ILCT/LLCT
	S ₁₄	3.94	314.9	0.0774	H-4→L+1 (10%), H-2→L+2 (49%)	MLCT/ILCT/LLCT
	S ₁₈	4.13	300.2	0.0722	H-4→L+2 (49%), H-3→L+2 (14%)	MLCT/ILCT/LLCT
	S ₂₂	4.26	290.7	0.1245	H-5→L+1 (56%), H-2→L+3 (15%)	MLCT/ILCT
	S ₃₄	4.62	268.6	0.1330	H-1→L+4 (26%), H-1→L+5 (24%)	MLCT/ILCT/LLCT
	S 35	4.63	267.5	0.3014	H-2→L+5 (23%), H-1→L+5 (18%)	MLCT/ILCT/LLCT
	S ₃₆	4.64	267.0	0.0487	H-10→L (24%), H-8→L (47%), H→L+8 (13%)	ILCT/LLCT
	S 39	4.70	263.6	0.0336	H-4→L+4 (44%), H-3→L+4 (15%)	MLCT/ILCT
	S ₄₂	4.76	260.6	0.0459	H-10→L (34%), H-8→L (14%), H-6→L+3 (16%)	MLCT/ILCT
	S45	4.79	259.0	0.0490	H-6→L+3 (48%), H→L+9 (32%)	MLCT/ILCT
	S ₄₆	4.80	258.2	0.0692	H-4→L+4 (20%), H-3→L+4 (52%)	MLCT/ILCT
	S 52	4.95	250.3	0.1438	$H-1 \rightarrow L+6 (14\%), H \rightarrow L+10 (35\%)$	MLCT/ILCT/LLCT
	S 53	4.96	250.0	0.0443	$H-2 \rightarrow L+6 (19\%), H-1 \rightarrow L+6 (24\%) H \rightarrow L+10 (18\%)$	MLCT/ILCT
	S 56	5.00	247.8	0.0776	$H-2 \rightarrow L+7 (24\%), H-1 \rightarrow L+7 (15\%)$	MLCT/ILCT/LLCT
	T ₁	2.74	452.2	0.0000	$H-1 \rightarrow L+2 (11\%), H \rightarrow L (25\%), H \rightarrow L+1 (44\%)$	MLCT/ILCT/LLCT
	T_2	2.80	442.4	0.0000	$H \rightarrow L (48\%), H \rightarrow L+2 (24\%)$	MLCT/ILCT/LLCT
	T_2	2.82	440.0	0.0000	$H \rightarrow L (24\%), H \rightarrow L+1 (16\%), H \rightarrow L+2 (23\%)$	MLCT/ILCT/LLCT
	- 3	2.02		0.0000		
la	S_1	2.80	443.2	0.0027	H→L (99%)	MLCT/LLCT
	S_2	3.19	388.8	0.0511	$H \rightarrow L + 1 (97\%)$	MLCT/ILCT
	S ₆	3.70	335.0	0.0524	H-3→L (49%), H→L+3 (38%)	MLCT/LLCT
	S 11	3 88	319.9	0.0432	$H-2 \rightarrow L+1$ (54%), $H-1 \rightarrow L+1$ (16%)	MLCT/ILCT
	S ₁₇	4 15	299.0	0 1609	H-6 \rightarrow L (50%) H-3 \rightarrow L+1 (23%)	MLCT/ILCT
	S10	4 16	298.3	0 1441	$H-6 \rightarrow L (38\%) H-3 \rightarrow L+1 (27\%)$	MLCT/ILCT
	~ 18 S 10	4 18	296.5	0.0827	$H-3 \rightarrow L+2 (68\%)$	MLCT/ILCT/LLCT
	~ 19	4.25	201.9	0.0701	$H_{1} = \frac{1}{2} = \frac{1}{2$	

	S_{21}	4.27	290.4	0.0671	H-5 \rightarrow L+1(16%), H-4 \rightarrow L+2(15%), H-1 \rightarrow L+3 (31%),	MLCT/ILCT
	S_{23}	4.36	284.1	0.0502	H-5→L+1 (17%), H-1→L+3 (46%)	MLCT/ILCT/LLCT
	S_{24}	4.39	282.2	0.0463	H-5→L+2 (15%), H-2→L+3 (47%)	MLCT/ILCT/LLCT
	\mathbf{S}_{25}	4.44	279.0	0.0532	H-5→L+2 (42%), H-2→L+3 (21%)	MLCT/ILCT
	\mathbf{S}_{27}	4.52	274.5	0.0719	H-1→L+4 (53%)	MLCT/ILCT
	${S}_{30}$	4.61	269.1	0.0487	H-6→L+1 (62%), H→L+7 (16%)	MLCT/ILCT/LLCT
	\mathbf{S}_{31}	4.62	268.6	0.0438	H-6→L+1 (23%), H→L+7 (62%)	MLCT/ILCT/LLCT
	S_{33}	4.69	264.5	0.2699	H-1→L+5 (45%), H→L+7 (12%)	MLCT/ILCT/LLCT
	\mathbf{S}_{37}	4.75	260.8	0.0648	H-6→L+2 (37%), H-2→L+6 (15%)	MLCT/ILCT/LLCT
	S_{38}	4.78	259.1	0.0364	H-9→L (45%), H-8→L (22%), H-2→L+6 (13%)	MLCT/LLCT
	S 39	4.80	258.1	0.0565	H-9→L (17%), H-2→L+6 (39%)	MLCT/ILCT/LLCT
	S_{43}	4.90	253.1	0.1261	H→L+8 (31%), H→L+10 (14%)	MLCT/ILCT/LLCT
	S_{44}	4.95	250.6	0.0524	H-3→L+6 (32%), H→L+9 (12%)	MLCT/ILCT/LLCT
	S_{46}	4.98	249.0	0.0319	H-7→L+1 (43%), H-5→L+4 (14%)	MLCT/ILCT/LLCT
	S_{49}	5.00	247.8	0.0514	H-8→L (13%), H-6→L+3 (15%), H→L+8 (28%)	MLCT/ILCT/LLCT
	\mathbf{S}_{51}	5.07	244.4	0.0827	H-6→L+3 (42%), H-4→L+6 (28%)	MLCT/ILCT
	S_{53}	5.10	243.3	0.0800	H-5→L+5 (36%), H-4→L+6 (26%)	MLCT/ILCT
	T_1	2.74	453.2	0.0000	H→L (61%), H→L+1 (19%)	MLCT/ILCT/LLCT
	T_2	2.81	440.7	0.0000	H→L (36%), H→L+1 (35%)	MLCT/ILCT/LLCT
	T_3	2.83	437.8	0.0000	H-1→L+1 (28%), H→L+2 (37%)	MLCT/ILCT
	_					
5a	\mathbf{S}_1	2.84	436.4	0.0014	H→L (99%)	MLCT/LLCT
	S_2	3.17	391.0	0.0517	H→L+1 (97%)	MLCT/ILCT
	S_7	3.75	330.9	0.0843	H-3→L (73%)	MLCT/LLCT
	S_8	3.84	323.1	0.0335	H-2→L+1 (70%)	MLCT/ILCT
	S ₁₇	4.17	297.2	0.0593	H-3→L+2 (49%), H→L+6 (12%)	MLCT/ILCT
	S ₁₉	4.25	291.9	0.0806	H-4→L+1 (59%), H-2→L+3 (10%)	MLCT/ILCT
	S_{20}	4.26	290.9	0.0341	H-5→L+1 (15%), H-1→L+3 (43%)	MLCT/ILCT/LLCT
	S_{21}	4.34	286.0	0.0571	H-6→L (29%), H-2→L+3 (42%)	MLCT/ILCT/LLCT
	S ₂₃	4.38	283.1	0.0416	H-4→L+2 (17%), H-1→L+3 (35%)	MLCT/ILCT/LLCT
	S ₂₄	4.42	280.7	0.1390	H-6→L (38%), H-5→L+2 (25%)	MLCT/ILCT
	S ₂₅	4.45	278.3	0.1135	H-6→L (13%), H-5→L+2 (43%), H-2→L+3 (13%)	MLCT/ILCT
	S ₂₆	4.54	272.9	0.0433	H-3→L+3 (69%)	MLCT/ILCT/LLCT
	S_{28}	4.56	271.8	0.0350	H-2→L+5 (18%), H-1→L+4 (45%)	MLCT/ILCT
	S ₃₁	4.67	265.3	0.2231	H-2→L+5 (27%), H-1→L+5 (21%)	MLCT/ILCT
	S ₃₂	4.70	264.0	0.2235	H-2→L+5 (20%), H-1→L+5 (28%)	MLCT/ILCT
	S_{34}	4.76	260.6	0.0553	H-3→L+4 (60%), H-2→L+5 (10%)	MLCT/ILCT/LLCT
	S ₃₆	4.80	258.2	0.0366	H-6→L+1 (58%), H-1→L+6 (23%)	ILCT/LLCT
	\mathbf{S}_{41}	4.90	253.0	0.0901	H-4→L+4 (21%), H→L+8 (16%), H→L+9 (21%)	MLCT/ILCT
	\mathbf{S}_{44}	4.96	250.1	0.0553	H→L+8 (48%), H→L+9 (20%)	MLCT/ILCT/LLCT
	S_{49}	5.05	245.5	0.0891	H-8→L (24%), H-3→L+6 (25%)	MLCT/ILCT/LLCT
	\mathbf{S}_{57}	5.22	237.6	0.0362	H-9→L+1 (19%), H-7→L+2 (14%)	ILCT/LLCT
	\mathbf{S}_{59}	5.25	236.0	0.0807	H-6→L+3 (67%)	ILCT
	T_1	2.77	448.2	0.0000	H-1→L+2 (15%), H→L (15%), H→L+1 (50%)	MLCT/ILCT

	T_2	2.82	440.0		0.0000	H→L (71%)	MLCT/ILCT/LLCT
	T_3	2.83	437.9		0.0000	H-1→L+1 (25%), H→L (11%), H→L+2 (34%)	MLCT/ILCT
6a	\mathbf{S}_1	2.77	448.3		0.0004	H→L (98%)	MLCT/LLCT
	S_2	3.19	388.8		0.0437	H→L+1 (97%)	MLCT/ILCT/LLCT
	\mathbf{S}_7	3.70	334.7		0.0338	H-3→L (23%), H→L+3 (62%)	MLCT/ILCT/LLCT
	S_{17}	4.14	299.6		0.0535	H-3→L+1 (18%), H-3→L+2 (32%), H→L+7 (15%)	MLCT/ILCT/LLCT
	S_{19}	4.17	297.4		0.0359	H-3→L+1(15%), H-3→L+2 (29%), H-2→L+2 (25%)	MLCT/ILCT/LLCT
	S_{20}	4.26	291.1		0.0710	H-4→L+1 (51%), H-2→L+1 (14%)	MLCT/ILCT/LLCT
	\mathbf{S}_{21}	4.28	289.5		0.0519	H-5→L+1 (19%), H-1→L+3 (24%),	MLCT/ILCT
	S_{22}	4.32	286.8		0.2184	H-6→L (59%), H-2→L+3 (14%)	ILCT/LLCT
	S_{25}	4.43	279.8		0.0579	H-5→L+2 (34%), H-2→L+3 (18%)	MLCT/ILCT
	S_{26}	4.46	278.2		0.1012	H-5→L+2 (28%), H-2→L+3 (35%)	MLCT/ILCT/LLCT
	S ₂₇	4.49	276.1		0.0358	H-1→L+4 (66%)	MLCT/ILCT/LLCT
	S_{28}	4.54	273.4		0.0632	H-4→L+3 (10%), H-3→L+3 (68%)	MLCT/ILCT/LLCT
	S_{29}	4.55	272.5		0.0342	H-4→L+4 (10%), H-2→L+4 (64%)	MLCT/ILCT/LLCT
	S_{32}	4.68	265.0		0.0932	H-1→L+6 (39%), H→L+8 (29%)	MLCT/ILCT/LLCT
	S_{33}	4.69	264.4		0.1327	H-1→L+6 (29%), H→L+8 (44%)	MLCT/ILCT/LLCT
	S_{34}	4.70	264.0		0.0357	H-4→L+3 (49%), H-2→L+3 (13%)	MLCT/ILCT/LLCT
	S_{36}	4.74	261.7		0.1129	H-2→L+5 (40%)	MLCT/ILCT/LLCT
	S_{37}	4.76	260.6		0.0437	H-7→L (45%)	MLCT/ILCT
	\mathbf{S}_{38}	4.78	259.3		0.0516	H-4→L+4 (46%)	MLCT/ILCT/LLCT
	$S_{41} \\$	4.82	257.1		0.0326	H-6→L+1(21%), H-5→L+3 (38%), H-1→L+7 (17%)	MLCT/ILCT
	S_{43}	4.83	256.5		0.0424	H-8→L (15%), H-6→L+1 (49%)	ILCT/LLCT
	S_{44}	4.86	255.0		0.0581	H-3→L+5 (37%)	MLCT/ILCT/LLCT
	S_{46}	4.92	252.2		0.1579	H-6→L+2 (12%), H→L+9 (39%)	MLCT/ILCT
	S_{48}	4.94	250.9		0.0513	H-5→L+4 (53%)	MLCT/ILCT
	S_{58}	5.20	238.4		0.0621	H-10→L (27%), H-6→L+3 (38%)	ILCT
	T_1	2.72	456.0		0.0000	H→L (90%)	MLCT/LLCT
	T_2	2.79	443.9		0.0000	H-1→L+2 (16%), H→L+1 (57%)	MLCT/ILCT/LLCT
	T_3	2.83	437.6		0.0000	H-1→L+1 (26%), H→L+2 (49%)	MLCT/ILCT
7a	\mathbf{S}_1	2.99	415.0	411	0.0007	H→L (99%)	MLCT/LLCT
	S_2	3.18	390.3	380	0.0626	H→L+1 (96%)	MLCT/LLCT
	S_3	3.28	378.5		0.0008	H→L+2 (97%)	MLCT/ILCT
	S_6	3.74	331.6		0.0444	H-2→L (24%), H-1→L (58%)	MLCT/LLCT
	S ₉	3.90	318.1		0.0470	H-3→L (40%), H→L+5 (13%)	MLCT/ILCT/LLCT
	S_{12}	3.97	312.2		0.0857	H-2→L+1 (30%), H-1→L+2 (47%)	MLCT/ILCT/LLCT
	$S_{16} \\$	4.16	298.0		0.0904	H-3→L+2 (51%), H-1→L+2 (11%),	MLCT/ILCT
	$S_{19} \\$	4.26	291.2		0.0325	H-5→L (18%), H-2→L+3 (51%)	MLCT/ILCT
	S_{20}	4.31	287.8		0.1049	H-4→L+1 (52%), H-2→L+3 (10%)	MLCT/ILCT/LLCT
	\mathbf{S}_{21}	4.33	286.4		0.0453	H-4→L+2 (36%), H-1→L+4 (19%)	MLCT/ILCT
	\mathbf{S}_{28}	4.67	265.4		0.3452	H-2→L+5 (15%), H-1→L+5 (33%)	MLCT/ILCT
	S_{30}	4.72	262.6		0.0331	H-5→L+3 (37%), H-2→L+5 (14%)	MLCT/ILCT

 S ₃₁	4.75	261.1		0.1598	H-5→L+3 (20%), H-2→L+5 (29%)	MLCT/ILCT
\mathbf{S}_{32}	4.79	258.9	253	0.2396	H-6→L (61%), H-3→L+4 (12%)	MLCT/ILCT
\mathbf{S}_{34}	4.90	253.2		0.0760	H-4→L+4 (49%), H→L+6 (30%)	MLCT/ILCT
\mathbf{S}_{35}	4.93	251.2		0.1806	H-4→L+4 (35%), H→L+6 (31%)	MLCT/ILCT
S_{36}	4.97	249.6		0.0348	H-6→L+1 (16%), H→L+7 (29%)	MLCT/ILCT
S_{44}	5.23	237.1		0.1435	H-6→L+3 (74%)	ILCT/LLCT
S_{48}	5.34	232.2		0.0455	H-7→L+1 (29%), H→L+8 (24%)	MLCT/ILCT/LLCT
\mathbf{S}_{52}	5.44	227.8		0.0517	H→L+11 (37%), H→L+12 (16%)	MLCT/ILCT/LLCT
T_1	2.79	444.9		0.0000	H-1→L+2 (16%), H→L+1 (63%)	MLCT/ILCT/LLCT
T_2	2.83	438.0		0.0000	H-1→L+1 (24%), H→L+2 (53%)	MLCT/ILCT/LLCT
T_3	2.96	419.3	411	0.0000	H→L (96%)	MLCT/LLCT
 T_4	3.24	382.9	380	0.0000	H→L+1 (13%), H→L+2 (21%)	MLCT/ILCT/LLCT

Table S10 Calculated excited energies, dominant orbital excitations, and oscillator strength (f) from PCM-TD -B3LYP calculations in CH₃CN media for **1b-7b**

	Gu	E_{th}	λ_{cal}	λ_{exp}	C	Excitation	01
	State	eV	nm	nm	J	(contribution)	Character
1b	S_1	3.21	386.0		0.0014	H→L (97%)	MLCT/LLCT
	S_2	3.36	368.8		0.0444	H→L+1 (95%)	MLCT/ILCT
	\mathbf{S}_7	3.91	317.3		0.0490	H-3→L (20%), H-2→L+1 (27%), H-1→L+1 (20%)	MLCT/ILCT/LLCT
	S_{10}	4.00	310.2		0.0568	H-4→L (17%), H-1→L+2 (49%)	MLCT/ILCT/LLCT
	\mathbf{S}_{11}	4.01	309.0		0.0398	H-4→L (48%), H-1→L+2 (23%)	MLCT/ILCT/LLCT
	\mathbf{S}_{15}	4.17	297.6		0.0431	H-4→L+1 (15%), H-3→L+2 (17%), H→L+5 (19%)	MLCT/ILCT
	\mathbf{S}_{17}	4.25	291.9		0.0722	H-4→L+1 (24%), H-3→L+2 (22%), H→L+4 (17%)	MLCT/ILCT
	\mathbf{S}_{18}	4.26	291.2		0.0548	H-4→L+2 (16%), H-3→L+2 (13%), H→L+5 (33%)	MLCT/ILCT
	\mathbf{S}_{19}	4.32	287.3		0.0605	H-4→L+2 (34%), H-1→L+3 (11%), H→L+5 (20%)	MLCT/ILCT
	S_{20}	4.33	286.3		0.0335	H-5→L+1 (74%), H-4→L+2 (11%)	MLCT/ILCT
	S_{21}	4.39	282.3		0.1082	H-6→L (59%), H-2→L+3 (19%)	MLCT/ILCT/LLCT
	\mathbf{S}_{22}	4.32	279.7		0.0325	H-1→L+3 (61%)	MLCT/ILCT/LLCT
	S_{24}	4.52	274.6		0.1963	H-6→L (25%), H-2→L+3 (46%)	MLCT/ILCT/LLCT
	S_{30}	4.71	263.4		0.1500	H-2→L+5 (16%), H-1→L+5 (26%)	MLCT/ILCT/LLCT
	\mathbf{S}_{31}	4.73	261.9		0.0781	H-4→L+3 (66%)	MLCT/ILCT/LLCT
	S_{32}	4.76	260.6		0.1088	H-7→L (33%), H-6→L+2 (19%), H→L+7 (14%)	MLCT/ILCT
	S_{33}	4.77	259.9		0.1060	H-7→L (58%), H-6→L+2 (14%)	ILCT
	S_{34}	4.79	258.6		0.0428	H-6→L+2 (28%), H→L+7 (44%)	MLCT/ILCT
	\mathbf{S}_{35}	4.82	257.4		0.0837	H-6→L+2 (17%), H-2→L+5 (14%), H→L+7 (29%)	MLCT/ILCT
	S_{42}	4.99	248.4		0.0362	H-8→L (50%), H-4→L+4 (17%)	MLCT/ILCT
	\mathbf{S}_{43}	5.01	247.2		0.0525	H-4→L+5 (56%), H→L+8 (20%)	MLCT/ILCT
	\mathbf{S}_{44}	5.02	247		0.1259	H-4→L+5 (19%), H→L+8 (23%)	MLCT/ILCT
	S_{47}	5.12	242.1		0.0391	H-10→L (10%), H-6→L+3 (46%)	MLCT/ILCT/LLCT
	\mathbf{S}_{53}	5.20	238.4		0.0618	H-6→L+3 (13%), H-3→L+6 (11%)	MLCT/ILCT/LLCT
	T_1	2.89	429.1		0.0000	H-1→L+2 (24%), H→L+1 (44%)	MLCT/ILCT
	T_2	2.92	424.0		0.0000	H-2→L+2 (10%), H-1→L+1 (33%), H→L+2 (30%)	MLCT/ILCT
	T_3	3.15	393.5		0.0000	H-6→L (12%), H-3→L (24%), H→L (36%)	MLCT/ILCT/LLCT

2b	\mathbf{S}_1	3.05	406.7	0.0017	H→L (98%)	MLCT/LLCT
	\mathbf{S}_2	3.32	373.2	0.0464	H→L+1 (95%)	MLCT/LLCT
	S_4	3.53	351.2	0.0361	H-4→L (23%), H-2→L (72%)	LLCT/ILCT
	S_5	3.58	346.0	0.0376	H-1→L (89%)	LLCT
	S_6	3.80	326.7	0.0651	H-3→L (76%), H→L+3 (10%)	MLCT/ILCT/LLCT
	S_8	3.85	322.3	0.0447	H-4→L+1 (18%), H-2→L+1 (58%)	MLCT/ILCT/LLCT
	S_9	3.87	320.4	0.0838	H-5→L (27%), H-4→L (29%), H-1→L+1 (21%)	MLCT/ILCT/LLCT
	\mathbf{S}_{11}	3.91	317.0	0.0863	H-5→L (49%), H-4→L (25%), H-2→L (13%)	MLCT/ILCT/LLCT
	S_{12}	3.99	310.5	0.0695	H-1→L+2 (76%)	MLCT/ILCT/LLCT
	\mathbf{S}_{16}	4.13	299.8	0.0498	H-3→L+1 (27%), H→L+5 (39%)	MLCT/ILCT
	\mathbf{S}_{19}	4.23	293.1	0.0388	H-4→L+1 (29%), H-3→L+2 (20%), H→L+5 (25%)	MLCT/ILCT
	S_{20}	4.25	291.8	0.0472	H-5→L+1 (47%), H-3→L+2 (19%)	MLCT/ILCT
	S_{21}	4.28	289.3	0.0679	H-5→L+2(20%), H-4→L+2 (16%), H-2→L+3 (26%)	MLCT/ILCT/LLCT
	S_{23}	4.34	285.9	0.1160	H-5→L+2(27%), H-2→L+3 (20%), H-1→L+3 (19%)	MLCT/ILCT
	S_{24}	4.35	284.8	0.0542	H-4→L+2 (34%), H-2→L+3 (23%)	MLCT/ILCT
	\mathbf{S}_{34}	4.71	263.3	0.1222	H-7→L+1 (33%), H-1→L+5 (18%)	ILCT
	\mathbf{S}_{35}	4.73	262.2	0.1769	H-2→L+5 (22%), H-1→L+5 (40%)	MLCT/ILCT
	\mathbf{S}_{36}	4.74	261.5	0.1082	H-8→L (19%), H-7→L+1 (43%)	ILCT
	\mathbf{S}_{37}	4.76	260.4	0.2163	H-8→L (52%)	MLCT/ILCT
	S_{43}	4.93	251.3	0.1701	H-4→L+4 (16%), H→L+7 (34%), H→L+8 (13%)	MLCT/ILCT/LLCT
	\mathbf{S}_{44}	4.96	249.9	0.0673	H-5→L+4 (53%)	MLCT/ILCT
	S_{47}	5.05	245.6	0.0476	H-8→L+1 (29%), H→L+7 (19%), H→L+8 (20%)	MLCT/ILCT/LLCT
	\mathbf{S}_{57}	5.24	236.7	0.0387	H-4→L+10 (18%), H→L+9 (11%)	MLCT/ILCT/LLCT
	T_1	2.87	432.5	0.0000	H-3→L (15%), H-2→L (59%)	ILCT/LLCT
	T_2	2.88	430.5	0.0000	H-1→L+2 (21%), H→L+1 (45%)	MLCT/ILCT/LLCT
	T ₃	2.92	425.1	0.0000	H-1→L+1 (34%), H→L+2 (32%)	MLCT/ILCT/LLCT
21	G	2.05	106.6	0.0010	H. I. (000/)	
36	\mathbf{S}_1	3.05	406.6	0.0018	$H \rightarrow L (98\%)$	MLCI/LLCI
	5 ₂	3.33	3/2.6	0.0445	$H \rightarrow L+I (95\%)$	MLCI/ILCI/LLCI
	55 5	5.58 2.70	340.3 226.8	0.0407	$H^{-1} \rightarrow L (88\%)$	LLUI MLCT/ILCT/ILCT
	5 ₆ S	2.01	320.8	0.0343	$ \begin{array}{c} \Pi - 5 \longrightarrow L (80\%) \\ \Pi - 4 \longrightarrow L + 1 (14\%) \\ \Pi - 2 \longrightarrow L + 1 (50\%) \\ \Pi - 1 \longrightarrow L + 2 (12\%) \\ \Pi - 2 \longrightarrow L + 2 (12\%$	MLCT/ILCT
	58 S	3.04	316.8	0.0392	H = -L + I (1470), H = -2 - L + I (5070), H = -2 + 3 (1570)	MLCT/ILCT/LLCT
	S ₁₁	3.91	310.8	0.0900	$H_{-3} \rightarrow L$ (41/%), $H_{-4} \rightarrow L$ (34/%), $H_{-2} \rightarrow L$ (10/%) $H_{-1} \rightarrow L + 2$ (75%)	MLCT/ILCT/LLCT
	S	<i>4</i> 02	308.0	0.0000	$H_{-1} \rightarrow L_{+2} (1376)$ $H_{-2} \rightarrow L_{+2} (59\%) H_{-1} \rightarrow L_{+1} (11\%)$	MLCT/ILCT/LLCT
	S ₁₃	4.02	300.0	0.0333	$H_{} = H_{} = (85\%)$	MLCT/ILCT/LLCT
	S 16	4 14	299.4	0.0441	$H_{-3} \rightarrow I + 1 (36\%) H \rightarrow I + 5 (37\%)$	MICT/ILCT
	S10	4 23	292.8	0.0392	$H \rightarrow I + 1$ (36%) $H \rightarrow I + 2$ (13%) $H \rightarrow I + 5$ (25%)	MLCT/ILCT/LLCT
	~ 19 S 20	4.25	291.9	0.0544	$H-5 \rightarrow L+1$ (48%), $H-3 \rightarrow L+2$ (17%)	MLCT/ILCT
	~ 20 S 21	4.29	289.2	0.0638	$H-5 \rightarrow L+2$ (36%), $H-2 \rightarrow L+3$ (14%)	MLCT/ILCT
	S ₂₃	4.34	285.5	0.0683	H-5→L+2 (21%), H-2→L+3(17%). H-1→L+3 (22%)	MLCT/ILCT
	S ₂₄	4.36	284.3	0.0725	H-4→L+2 (28%), H-2→L+3 (29%)	MLCT/ILCT/LLCT
	S ₃₆	4.70	263.7	0.1566	H-7→L+1 (14%), H-1→L+5 (33%)	MLCT/ILCT/LLCT
	- 30		* *			

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S 38	4.73	262.1	0.1178	H-2→L+5 (17%), H-1→L+5 (21%),	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S 39	4.75	261.1	0.0888	H-10→L (17%), H-7→L+1 (40%)	ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S_{40}	4.76	260.2	0.1746	H-10→L (29%), H-8→L (20%)	MLCT/ILCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{46}	4.92	252.0	0.0644	H→L+7 (18%), H→L+8 (56%)	MLCT/LLCT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S_{47}	4.94	250.9	0.0479	H-4→L+4 (12%), H-2→L+6 (30%), H→L+9 (18%)	MLCT/ILCT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		S_{49}	4.97	249.7	0.0640	H-5→L+4 (41%), H→L+9 (20%)	MLCT/ILCT/LLCT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{52}	5.02	246.7	0.0358	H-8→L+1 (49%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{55}	5.07	244.5	0.0412	H-11→L (25%), H→L+10 (17%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{58}	5.12	241.9	0.0761	H-2→L+7 (73%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		T_1	2.87	431.4	0.0000	H-3→L (20%), H-2→L (52%)	ILCT/LLCT
T ₃ 2.92 424.9 0.0000 H-1→L+1 (33%), H→L+2 (32%) MLCT/LCT/LLT 4b S ₁ 3.03 408.6 0.0023 H→L+1 (95%) MLCT/LCT S ₂ 3.39 365.5 0.0493 H→L+1 (95%) MLCT/LCT S ₁ 3.87 320.3 0.0916 H-5→L (69%), H-4→L (13%) MLCT/LCT/LL S ₁₂ 4.04 307.2 0.0978 H-4→L (35%), H-1→L+2 (41%) MLCT/LCT/LL S ₁₅ 4.18 296.3 0.0475 H-3→L+1 (35%), H-1→L+2 (41%) MLCT/LCT/LL S ₁₆ 4.20 295.3 0.1076 H-6→L (17%), H-3→L+2 (13%), H→L+5 (36%) MLCT/LCT/LL S ₁₆ 4.26 291.1 0.0418 H-5→L+1 (18%), H-3→L+2 (29%), H-2→L+2 (24%) MLCT/LCT/LL S ₁₈ 4.26 291.1 0.0418 H-5→L+3 (47%), H-1→L+5 (17%) MLCT/LCT S ₃₀ 4.68 264.8 0.0581 H-7→L (18%), H-1→L+5 (17%) MLCT/LCT S ₃₀ 4.68 264.8 0.0581 H-3→L+3 (20%), H-1→L+5 (17%) MLCT/LCT/LL S ₃₀ 4.68 264.8 0.0581 H-3→L+3 (20%), H-1→L+5 (17%)		T_2	2.88	430.1	0.0000	H-1→L+2 (21%), H→L+1 (43%)	MLCT/ILCT/LLCT
4b S1 3.03 408.6 0.0023 H→L (98%) MLCT/LCT S2 3.39 365.5 0.0493 H→L+1 (95%) MLCT/LCT S7 3.87 320.3 0.0916 H-5→L (69%), H-4→L (13%) MLCT/LCT/L S9 3.95 313.8 0.0415 H-3→L+1 (20%), H-2→L+1 (60%) LCT S12 4.04 307.2 0.0978 H-4→L (33%), H-1→L+2 (41%) MLCT/LCT/L S15 4.18 296.3 0.0475 H-3→L+1 (35%), H-2→L+1 (15%), H→L+4 (12%) MLCT/LCT S16 4.20 295.3 0.1076 H-6→L (17%), H-3→L+2 (13%), H-1→L+5 (36%) MLCT/LCT S16 4.20 295.3 0.1076 H-6→L (62%) H-3→L+2 (29%), H-2→L+3 (35%) MLCT/LCT S26 4.51 274.6 0.0581 H-7→L (18%), H-3→L+3 (10%), H-2→L+2 (24%) MLCT/LCT/L S26 4.51 274.6 0.0581 H-7→L (18%), H-1→L+5 (17%) MLCT/LCT/L S30 4.68 264.8 0.0581 H-7→L (18%), H-1→L+3 (19%) MLCT/LCT/L S33 4.75 260.9 0.1485 H-5→L +1 (37%), H-1→L+3 (17%) <th></th> <th>T_3</th> <th>2.92</th> <th>424.9</th> <th>0.0000</th> <th>H-1→L+1 (33%), H→L+2 (32%)</th> <th>MLCT/ILCT/LLCT</th>		T_3	2.92	424.9	0.0000	H-1→L+1 (33%), H→L+2 (32%)	MLCT/ILCT/LLCT
4b S ₁ 3.03 408.6 0.0023 H→L (98%) MLCT/LLCT S ₂ 3.39 365.5 0.0493 H→L+I (95%) MLCT/LCT S ₇ 3.87 320.3 0.0916 H-5→L (69%), H-4→L (13%) MLCT/LCT S ₁₂ 4.04 307.2 0.0978 H-4→L (33%), H-1→L+2 (41%) MLCT/LCT/LL S ₁₆ 4.20 295.3 0.1076 H-6→L (17%), H-3→L+2 (13%), H→L+4 (12%) MLCT/LCT S ₁₆ 4.20 295.3 0.1076 H-6→L (17%), H-3→L+2 (13%), H→L+5 (36%) MLCT/LCT S ₁₈ 4.26 291.1 0.0418 H-5→L+1 (18%), H-3→L+2 (29%), H-2→L+2 (24%) MLCT/LCT S ₂₆ 4.51 274.6 0.0581 H-7→L (18%), H-3→L+3 (10%), H-2→L+3 (53%) MLCT/LCT/LL S ₃₆ 4.68 264.8 0.0581 H-7→L (18%), H-1→L+5 (17%) MLCT/LCT/LL S ₃₆ 4.75 260.9 0.1485 H-5→L+3 (13%), H-1→L+5 (17%) MLCT/LCT/LL S ₃₆ 4.82 255.5 0.0820 H-2→L+4 (48%) MLCT/LCT/LL <							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4b	\mathbf{S}_1	3.03	408.6	0.0023	H→L (98%)	MLCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S_2	3.39	365.5	0.0493	H→L+1 (95%)	MLCT/ILCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_7	3.87	320.3	0.0916	H-5→L (69%), H-4→L (13%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S_9	3.95	313.8	0.0415	H-3→L+1 (20%), H-2→L+1 (60%)	ILCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{12}	4.04	307.2	0.0978	H-4→L (33%), H-1→L+2 (41%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{15}	4.18	296.3	0.0475	H-3→L+1 (35%), H-2→L+1 (18%), H→L+4 (12%)	MLCT/ILCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{16}	4.20	295.3	0.1076	H-6→L (17%), H-3→L+2 (13%), H→L+5 (36%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{17}	4.21	294.7	0.2272	H-6→L (62%), H-5→L+1 (11%), H→L+5 (14%)	MLCT/ILCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{18}	4.26	291.1	0.0418	H-5→L+1(18%), H-3→L+2 (29%), H-2→L+2 (24%)	MLCT/ILCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{22}	4.37	283.5	0.0655	H→L+6 (62%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S_{26}	4.51	274.6	0.0581	H-7→L (18%), H-3→L+3 (10%), H-2→L+3 (53%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S_{30}	4.68	264.8	0.0581	H-3→L+3 (20%), H-2→L+4 (48%)	ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S_{32}	4.75	261.1	0.0826	H-5→L+3 (47%), H-1→L+5 (17%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S_{33}	4.75	260.9	0.1485	H-5→L+3 (13%), H-1→L+5 (48%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S_{34}	4.80	258.5	0.0820	H-2→L+5 (28%), H-1→L+6 (47%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S_{35}	4.83	256.9	0.0394	H-2→L+5 (18%), H-1→L+6 (29%), H→L+7 (12%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S ₃₆	4.85	255.6	0.0714	H→L+7 (43%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S_{37}	4.87	254.8	0.0432	H-3→L+4 (51%)	MLCT/ILCT/LLCT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		S_{38}	4.89	253.7	0.0744	H-2→L+6 (53%), H→L+7 (13%)	MLCT/ILCT/LLCT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathbf{S}_{41}	4.96	250.1	0.0322	H-7→L+1 (57%), H-7→L+2 (11%)	ILCT/LLCT
S_{44} 4.99 248.3 0.0654 H-3 \rightarrow L+5 (16%), H \rightarrow L+8 (21%) MLCT/ILCT/LL S_{47} 5.06 244.9 0.0840 H-5 \rightarrow L+4 (18%), H \rightarrow L+9 (21%), H \rightarrow L+11 (15%) MLCT/ILCT S_{50} 5.13 241.8 0.0497 H-7 \rightarrow L+2 (42%), H-6 \rightarrow L+3 (17%) ILCT/LLCT S_{51} 5.13 241.7 0.0688 H-7 \rightarrow L+2 (36%), H-6 \rightarrow L+3 (19%) MLCT/ILCT/LL S_{52} 5.14 241.2 0.0344 H-5 \rightarrow L+5 (16%), H-4 \rightarrow L+5 (32%), H \rightarrow L+8 (10%) MLCT/ILCT/LL T_1 2.89 429.5 0.0000 H-1 \rightarrow L+2 (22%), H \rightarrow L (10%), H \rightarrow L+1 (39%) MLCT/ILCT/LL T_2 2.93 423.6 0.0000 H-2 \rightarrow L+2 (10%), H-1 \rightarrow L+1 (34%), H \rightarrow L+2 (30%) MLCT/ILCT/LL T_3 3.02 411.2 0.0000 H \rightarrow L (86%) MLCT/LLCT		S_{42}	4.96	249.9	0.0626	H-9→L (11%), H-8→L (24%), H-7→L+1 (19%)	ILCT
S_{47} 5.06 244.9 0.0840 H-5 \rightarrow L+4 (18%), H \rightarrow L+9 (21%), H \rightarrow L+11 (15%) MLCT/ILCT S_{50} 5.13 241.8 0.0497 H-7 \rightarrow L+2 (42%), H-6 \rightarrow L+3 (17%) ILCT/LLCT S_{51} 5.13 241.7 0.0688 H-7 \rightarrow L+2 (36%), H-6 \rightarrow L+3 (19%) MLCT/ILCT/LL S_{52} 5.14 241.2 0.0344 H-5 \rightarrow L+5 (16%), H-4 \rightarrow L+5 (32%), H \rightarrow L+8 (10%) MLCT/ILCT/LL T_1 2.89 429.5 0.0000 H-1 \rightarrow L+2 (22%), H \rightarrow L (10%), H \rightarrow L+1 (39%) MLCT/ILCT/LL T_2 2.93 423.6 0.0000 H-2 \rightarrow L+2 (10%), H-1 \rightarrow L+1 (34%), H \rightarrow L+2 (30%) MLCT/ILCT/LL T_3 3.02 411.2 0.0000 H \rightarrow L (86%) MLCT/LLCT		\mathbf{S}_{44}	4.99	248.3	0.0654	H-3→L+5 (16%), H→L+8 (21%)	MLCT/ILCT/LLCT
S_{50} 5.13 241.8 0.0497 H-7→L+2 (42%), H-6→L+3 (17%) ILCT/LLCT S_{51} 5.13 241.7 0.0688 H-7→L+2 (36%), H-6→L+3 (19%) MLCT/ILCT/LL S_{52} 5.14 241.2 0.0344 H-5→L+5 (16%), H-4→L+5 (32%), H→L+8 (10%) MLCT/ILCT/LL T_1 2.89 429.5 0.0000 H-1→L+2 (22%), H→L (10%), H→L+1 (39%) MLCT/ILCT/LL T_2 2.93 423.6 0.0000 H-2→L+2 (10%), H-1→L+1 (34%), H→L+2 (30%) MLCT/ILCT/LL T_3 3.02 411.2 0.0000 H→L (86%) MLCT/LLCT		S_{47}	5.06	244.9	0.0840	H-5→L+4 (18%), H→L+9 (21%), H→L+11 (15%)	MLCT/ILCT
S_{51} 5.13 241.7 0.0688 H-7 \rightarrow L+2 (36%), H-6 \rightarrow L+3 (19%) MLCT/ILCT/LL S_{52} 5.14 241.2 0.0344 H-5 \rightarrow L+5 (16%), H-4 \rightarrow L+5 (32%), H \rightarrow L+8 (10%) MLCT/ILCT/LL T_1 2.89 429.5 0.0000 H-1 \rightarrow L+2 (22%), H \rightarrow L (10%), H \rightarrow L+1 (39%) MLCT/ILCT/LL T_2 2.93 423.6 0.0000 H-2 \rightarrow L+2 (10%), H-1 \rightarrow L+1 (34%), H \rightarrow L+2 (30%) MLCT/ILCT/LL T_3 3.02 411.2 0.0000 H \rightarrow L (86%) MLCT/LLCT		S_{50}	5.13	241.8	0.0497	H-7→L+2 (42%), H-6→L+3 (17%)	ILCT/LLCT
S ₅₂ 5.14 241.2 0.0344 H-5 \rightarrow L+5 (16%), H-4 \rightarrow L+5 (32%), H \rightarrow L+8 (10%) MLCT/ILCT/LL T ₁ 2.89 429.5 0.0000 H-1 \rightarrow L+2 (22%), H \rightarrow L (10%), H \rightarrow L+1 (39%) MLCT/ILCT/LL T ₂ 2.93 423.6 0.0000 H-2 \rightarrow L+2 (10%), H-1 \rightarrow L+1 (34%), H \rightarrow L+2 (30%) MLCT/ILCT/LL T ₃ 3.02 411.2 0.0000 H \rightarrow L (86%) MLCT/LLCT 5b S ₁ 3.07 403.6 0.0009 H \rightarrow L (98%) MLCT/LLCT		S_{51}	5.13	241.7	0.0688	H-7→L+2 (36%), H-6→L+3 (19%)	MLCT/ILCT/LLCT
T_1 2.89 429.5 0.0000 H-1 \rightarrow L+2 (22%), H \rightarrow L (10%), H \rightarrow L+1 (39%) MLCT/ILCT/LL T_2 2.93 423.6 0.0000 H-2 \rightarrow L+2 (10%), H-1 \rightarrow L+1 (34%), H \rightarrow L+2 (30%) MLCT/ILCT/LL T_3 3.02 411.2 0.0000 H \rightarrow L (86%) MLCT/LLCT 5b S_1 3.07 403.6 0.0009 H \rightarrow L (98%) MLCT/LLCT		\mathbf{S}_{52}	5.14	241.2	0.0344	H-5→L+5 (16%), H-4→L+5 (32%), H→L+8 (10%)	MLCT/ILCT/LLCT
T2 2.93 423.6 0.0000 H-2 \rightarrow L+2 (10%), H-1 \rightarrow L+1 (34%), H \rightarrow L+2 (30%) MLCT/ILCT/LL T3 3.02 411.2 0.0000 H \rightarrow L (86%) MLCT/LLCT 5b S1 3.07 403.6 0.0009 H \rightarrow L (98%) MLCT/LLCT		T_1	2.89	429.5	0.0000	H-1→L+2 (22%), H→L (10%), H→L+1 (39%)	MLCT/ILCT/LLCT
T_3 3.02 411.2 0.0000 H \rightarrow L (86%) MLCT/LLCT 5b S_1 3.07 403.6 0.0009 H \rightarrow L (98%) MLCT/LLCT		T_2	2.93	423.6	0.0000	H-2→L+2 (10%), H-1→L+1 (34%), H→L+2 (30%)	MLCT/ILCT/LLCT
5b S_1 3.07 403.6 0.0009 H \rightarrow L (98%) MLCT/LLCT		T_3	3.02	411.2	0.0000	H→L (86%)	MLCT/LLCT
5b S_1 3.07 403.6 0.0009 $H \rightarrow L (98\%)$ MLCT/LLCT							
	5b	\mathbf{S}_1	3.07	403.6	0.0009	H→L (98%)	MLCT/LLCT

	S_2	3.38	366.9	0.0491	H→L+1 (95%)	MLCT/ILCT
	S_7	3.90	318.1	0.1089	H-4→L (51%), H-1→L+1 (25%)	MLCT/ILCT/LLCT
	S ₉	3.94	314.4	0.0357	H-2→L+1 (33%), H→L+3 (47%)	MLCT/ILCT/LLCT
	S_{11}	4.03	307.8	0.0726	H-2→L+1 (10%), H-1→L+2 (73%)	ILCT
	S_{16}	4.18	296.3	0.0403	H-3→L+2 (16%), H-2→L+1 (12%), H→L+5 (24%)	MLCT/ILCT
	S_{17}	4.25	291.5	0.0444	H-4→L+1 (28%), H-3→L+2(21%), H-2→L+2 (23%)	MLCT/ILCT
	S_{18}	4.29	288.6	0.0649	H-4→L+2 (18%), H-3→L+2 (19%), H→L+5 (22%)	MLCT/ILCT
	S ₁₉	4.34	285.7	0.0643	H-4→L+2 (30%), H-1→L+3 (13%), H→L+5 (21%)	MLCT/ILCT
	S_{21}	4.42	280.5	0.0663	H-6→L (39%), H-2→L+3 (12%), H-1→L+3 (25%)	MLCT/ILCT/LLCT
	S ₂₂	4.44	279.1	0.0618	H-6→L (21%), H-1→L+3 (33%), H→L+6 (16%)	MLCT/ILCT/LLCT
	S_{25}	4.51	274.6	0.1667	H-6→L (22%), H-3→L+3 (11%), H-2→L+3 (51%)	MLCT/ILCT/LLCT
	S_{30}	4.72	262.5	0.0576	H-4→L+3 (46%), H-1→L+5 (19%)	MLCT/ILCT/LLCT
	\mathbf{S}_{31}	4.74	261.5	0.1598	H-4→L+3 (23%), H-1→L+5 (36%)	MLCT/ILCT/LLCT
	S_{32}	4.80	258.6	0.0393	H-2→L+5 (18%), H→L+7 (59%)	MLCT/ILCT/LLCT
	S_{33}	4.83	256.9	0.1884	H-2→L+5 (32%), H-1→L+5 (15%), H→L+7 (20%)	MLCT/ILCT
	S_{34}	4.85	255.7	0.0341	H-6→L+1 (70%), H-1→L+6 (10%)	ILCT/LLCT
	\mathbf{S}_{41}	4.97	249.3	0.1016	H-4→L+4 (15%), H→L+8 (14%), H→L+9 (30%)	MLCT/ILCT
	\mathbf{S}_{42}	5.00	248.2	0.0814	H-3→L+6 (11%), H-2→L+6 (29%)	ILCT/LLCT
	\mathbf{S}_{44}	5.03	246.4	0.033	H-8→L (35%), H-2→L+6 (29%)	MLCT/ILCT/LLCT
	\mathbf{S}_{45}	5.05	245.5	0.0697	H-4→L+4 (13%), H-4→L+5 (30%)	MLCT/ILCT
	\mathbf{S}_{56}	5.26	235.8	0.0603	H-3→L+11 (19%), H→L+10 (14%)	ILCT/LLCT
	\mathbf{S}_{58}	5.32	233.1	0.0318	H-6→L+3 (33%), H-2→L+7 (19%)	ILCT/LLCT
	S_{60}	5.35	231.7	0.0351	H-8→L+1 (72%)	ILCT/LLCT
	T_1	2.89	428.5	0.0000	H-1→L+2 (24%), H→L+1 (45%)	MLCT/ILCT
	T_2	2.93	423.7	0.0000	H-1→L+1 (35%), H→L+2 (32%)	MLCT/ILCT
	T_3	3.04	407.9	0.0000	H→L (88%)	MLCT/LLCT
6b	\mathbf{S}_1	3.00	413.4	0.0002	H→L (98%)	MLCT/LLCT
	S_2	3.40	364.8	0.0426	H→L+1 (95%)	MLCT/ILCT/LLCT
	\mathbf{S}_7	3.83	323.7	0.0515	H-5→L (29%), H-4→L (31%), H-3→L (27%)	MLCT/LLCT
	\mathbf{S}_{10}	4.01	309.3	0.0402	H-5→L (56%), H-4→L (12%), H-3→L (14%)	MLCT/LLCT
	\mathbf{S}_{11}	4.01	308.9	0.0314	H-2→L+1 (45%), H-1→L+1 (13%)	MLCT/ILCT/LLCT
	S_{13}	4.09	303.3	0.0654	H-1→L+2 (45%), H→L+4 (29%)	MLCT/ILCT/LLCT
	\mathbf{S}_{14}	4.13	299.9	0.0322	H-2→L+2 (57%)	MLCT/ILCT/LLCT
	S_{19}	4.30	288.5	0.0764	H-3→L+1 (26%), H-3→L+2 (37%)	MLCT/ILCT/LLCT
	S_{20}	4.33	286.3	0.0711	H-4→L+1 (14%), H-4→L+2 (40%)	MLCT/ILCT
	\mathbf{S}_{21}	4.36	284.3	0.0701	H-6→L (14%), H-5→L+1 (35%), H→L+6 (16%)	MLCT/ILCT
	\mathbf{S}_{22}	4.38	283.3	0.2426	H-6→L (62%)	MLCT/ILCT
	S_{26}	4.51	274.9	0.0488	H-2→L+3 (73%)	MLCT/ILCT/LLCT
	\mathbf{S}_{27}	4.57	271.1	0.0496	H-2→L+4 (12%), H-1→L+4 (61%)	MLCT/ILCT/LLCT
	S_{28}	4.65	266.9	0.034	H-2→L+4 (54%), H-1→L+4 (15%)	MLCT/ILCT/LLCT
	S_{29}	4.68	265.1	0.0545	H-4→L+3 (19%), H-3→L+3(36%), H-2→L+4 (14%)	MLCT/ILCT/LLCT
	\mathbf{S}_{31}	4.73	262.1	0.0372	H-2→L+5 (15%), H-1→L+5 (47%)	MLCT/ILCT/LLCT
	S_{32}	4.78	259.4	0.1843	H-2→L+6 (10%), H-1→L+6 (60%)	MLCT/ILCT/LLCT

S_{34} 4.81 257.9 0.0511 H-2 \rightarrow L+6 (15%), H-1 \rightarrow L+7 (15%), H \rightarrow L+8 (21%) MLC	T/ILCT/LLCT
S_{38} 4.85 255.7 0.0886 H-6 \rightarrow L+1 (53%), H-2 \rightarrow L+6 (15%) ILCT	/LLCT
S_{39} 4.86 255.1 0.0315 H-5 \rightarrow L+4 (15%), H-4 \rightarrow L+4 (44%) MLC	T/ILCT/LLCT
S_{41} 4.89 253.3 0.1044 H-2 \rightarrow L+7 (21%), H-1 \rightarrow L+7 (30%) MLC	T/ILCT/LLCT
S_{45} 4.98 249.2 0.1147 H-3→L+6 (13%), H-1→L+7 (13%), H→L+9 (34%) MLC	T/ILCT/LLCT
S_{48} 5.02 247.1 0.0798 H-4→L+5 (20%), H-3→L+5(25%), H-2→L+7 (21%) MLC	T/ILCT/LLCT
S_{54} 5.16 240.0 0.0453 H-11 \rightarrow L (12%), H-3 \rightarrow L+7 (28%) MLC	T/ILCT/LLCT
S_{59} 5.24 236.6 0.0581 H-6 \rightarrow L+3 (30%), H-3 \rightarrow L+7 (20%) MLC	T/ILCT
T ₁ 2.91 426.6 0.0000 H-1 \rightarrow L+2 (22%), H \rightarrow L+1 (46%) MLC	T/ILCT/LLCT
T ₂ 2.92 423.7 0.0000 H-1 \rightarrow L+1 (26%), H \rightarrow L (24%), H \rightarrow L+2 (27%) MLC	T/ILCT/LLCT
T ₃ 2.95 420.8 0.0000 H \rightarrow L (60%), H \rightarrow L+2 (13%) MLC	T/ILCT/LLCT
7b S_1 3.23 384.3 387 0.0005 $H \rightarrow L(98\%)$ MLC	T/LLCT
S_2 3.38 366.3 360 0.0574 H \rightarrow L+1 (95%) MLC	T/LLCT
S_4 3.76 329.8 0.0355 H-3→L (16%), H-1→L (74%) LLC	Г
$S_8 = 3.98 = 311.2 = 0.0389 = H-3 \rightarrow L (30\%), H-2 \rightarrow L (19\%) = ILCT$	/LLCT
S_{10} 4.04 306.5 0.0904 H-2 \rightarrow L+1 (30%), H-1 \rightarrow L+2 (21%) MLC	T/ILCT/LLCT
S_{11} 4.05 306.1 0.0784 H-4→L (52%), H-1→L+2 (12%) MLC	T/ILCT/LLCT
S_{13} 4.13 300.3 0.0265 H-2 \rightarrow L+2 (37%), H-1 \rightarrow L+1 (15%) MLC	T/ILCT/LLCT
S_{18} 4.29 289.3 0.1792 H-3 \rightarrow L+2 (33%) MLC	T/ILCT
S_{20} 4.33 286.2 0.0604 H-4→L+1 (21%), H-4→L+2 (29%) MLC	T/ILCT
S_{21} 4.38 283.2 0.0486 H-3 \rightarrow L+3 (19%), H-2 \rightarrow L+3 (58%) MLC	T/ILCT/LLCT
S_{27} 4.73 262.0 0.0392 H-2 \rightarrow L+4 (31%), H-1 \rightarrow L+5 (33%) MLC	T/ILCT
S_{28} 4.76 260.6 0.3376 H-2 \rightarrow L+4 (26%), H-1 \rightarrow L+5 (29%) MLC	T/ILCT
S_{29} 4.78 259.2 0.2396 H-6 \rightarrow L (52%), H-4 \rightarrow L+3 (22%) MLC	T/ILCT
S_{30} 4.83 256.8 0.0305 H-5 \rightarrow L+3 (87%) MLC	T/ILCT
S_{31} 4.84 256.4 0.0771 H-2 \rightarrow L+5 (58%) MLC	T/ILCT
S_{34} 4.96 250.1 0.0327 H-6 \rightarrow L+1 (78%), H-4 \rightarrow L+4 (14%) MLC	T/ILCT
S_{36} 4.98 249.1 250 0.2762 H \rightarrow L+6 (52%) MLC	T/ILCT/LLCT
S_{42} 5.24 236.7 0.1316 H-6 \rightarrow L+3 (79%) ILCT	/LLCT
S_{44} 5.29 234.2 0.0321 H \rightarrow L+7 (24%), H \rightarrow L+8 (29%) MLC	T/ILCT
S_{47} 5.41 229.0 0.0414 H \rightarrow L+7 (21%), H \rightarrow L+9 (21%) MLC	T/ILCT/LLCT
S_{49} 5.45 227.7 0.0405 H-7→L (20%), H-1→L+6 (16%) MLC	T/LLCT
S_{51} 5.50 225.4 0.0895 H-1 \rightarrow L+6 (17%), H \rightarrow L+10 (26%) MLC	T/ILCT/LLCT
S_{52} 5.53 224.1 0.0469 H-1 \rightarrow L+6 (17%), H \rightarrow L+11 (16%) MLC	T/ILCT/LLCT
T ₁ 2.91 426.0 0.0000 H-1 \rightarrow L+2 (23%), H \rightarrow L+1 (48%) MLC	T/ILCT/LLCT
T ₂ 2.94 422.2 0.0000 H-1 \rightarrow L+1 (33%), H \rightarrow L+2 (38%) MLC	T/ILCT/LLCT
T ₃ 3.19 388.8 387 0.0000 $H \rightarrow L(93\%)$ MLC	T/LLCT
T 2.25 270.1 0.0000 U.4. U.(100/) U.2. U.(210/) MLC	T/ILCT/LLCT
$I_4 = 5.55 = 570.1 = 0.0000 = H-4 \rightarrow L (19\%), H-5 \rightarrow L (21\%)$ MLC	

Parameter	1a	2a	3 a	4 a	5a	6a	7a
Ir	0.20	0.44	0.44	0.47	0.21	0.50	0.51
N^N^n	0.01	1.10	1.10	1.01	0.01	1.01	0.79
ppy1	0.01	0.16	0.16	0.17	0.01	0.16	0.27
ppy2	1.78	0.30	0.30	0.35	1.77	0.32	0.42
	1b	2b	3b	4 b	5b	6b	7b
Ir	0.12	0.06	0.05	0.34	0.42	0.44	0.54
N^N^n	0.01	1.92	1.92	1.26	1.29	1.15	0.81
ppy1	0.00	0.00	0.00	0.12	0.11	0.13	0.27
ppy2	1.87	0.02	0.02	0.28	0.19	0.27	0.38

Table S11 Calculated unpaired-electron spin density distribution for 1a-7a and 1b-7b

Table S1 Calculated net spin value located on Ir of MLCT and ³MC states using B3LYP functional for 1-1e and 2-2e

Spin(Ir)	1a	2a	3a	4a	5a	6a	7a
MLCT							
³ MC	1.543	1.359	1.528	1.356	1.388	1.500	1.397
Spin(Ir)	1b	2b	3b	4b	5b	6b	7b
MLCT							
³ MC	1.537	1.532	1.517	1.524	1.549	1.595	1.508

Table S12 Cartesian coordinates for the optimized structures for 1a, 7a and 7b in the S_0 and T_1 states.

Optimized S_0 structure for $[Ir(ppy^0)_2(N^{\wedge}N^1)]^+$ (1a)

Ir	0.39277600	-0.08175300	-0.09302600	С	1.77321200	0.89182600	4.42734400
Ν	1.95912200	1.26706600	-0.84972100	Н	2.09973500	1.07451800	5.44640400
Ν	-0.62127900	1.86068100	-0.47400000	С	2.25512900	-0.19925100	3.72544100
Ν	-1.82434500	2.42353100	-0.27959500	Н	2.95855000	-0.88068800	4.18906600
Ν	0.94335100	0.41309800	1.82717900	С	1.83119300	-0.43553400	2.41373000
Ν	-0.17054200	-0.82087000	-1.92510600	С	2.25038400	-1.54536400	1.56821100
С	3.23535400	0.90438700	-1.03686000	С	1.64699300	-1.58940600	0.28851600
Н	3.46738600	-0.13060800	-0.80580100	С	2.02118300	-2.63261000	-0.56530900
С	4.20090100	1.78787400	-1.49895400	Н	1.58014700	-2.71170700	-1.55448700
Н	5.22112500	1.44658800	-1.63452300	С	2.95639800	-3.58715200	-0.16934400
С	3.83033600	3.09998200	-1.77837500	Н	3.22738400	-4.38821700	-0.85191300
Н	4.55969100	3.81673900	-2.14236100	С	3.54286500	-3.52851300	1.09473000
С	2.50963700	3.48100900	-1.58608400	Н	4.26855900	-4.27595000	1.39891000
Н	2.18590700	4.49428700	-1.79681600	С	3.18890400	-2.50683300	1.96295900
С	1.59353900	2.54018200	-1.11795200	Н	3.64860100	-2.46320200	2.94637500
С	0.19011200	2.85134100	-0.87883800	С	0.35752800	-0.43691100	-3.09878100
С	-0.51148500	4.06686700	-0.94811400	Н	1.10397400	0.34682600	-3.04738500
Н	-0.14489500	5.03881900	-1.24040700	С	-0.01018900	-1.00476400	-4.30461400
С	-1.79186000	3.74935100	-0.55782400	Н	0.44762100	-0.66151100	-5.22519200
Н	-2.68725300	4.34751600	-0.47619300	С	-0.96793600	-2.01838200	-4.29415200
С	-2.97271000	1.70093500	0.16145800	Н	-1.27895600	-2.49438500	-5.21894900
С	-3.60018200	2.10509700	1.33720100	С	-1.52009400	-2.41139400	-3.08759000
Н	-3.18531600	2.92097900	1.92201000	Н	-2.26625100	-3.19670900	-3.05788000
С	-4.75427700	1.44616600	1.74796700	С	-1.11637100	-1.80222200	-1.89361000
Н	-5.25145800	1.75245300	2.66282000	С	-1.63436900	-2.09575400	-0.56614600
С	-5.26308800	0.39483700	0.99000300	С	-1.08281300	-1.31571600	0.47854100
Н	-6.16208600	-0.11994000	1.31414500	С	-1.58566000	-1.52137500	1.76713200
С	-4.62445600	0.00325700	-0.18427700	Н	-1.19207400	-0.94872800	2.60205900
Н	-5.02153400	-0.81673900	-0.77297500	С	-2.58913300	-2.45564300	2.00826900
С	-3.47604200	0.66000800	-0.61078800	Н	-2.96115400	-2.59505900	3.01997000
Н	-2.97628900	0.37942800	-1.53134600	С	-3.11427500	-3.22521700	0.96842000
С	0.47558800	1.46923900	2.51128000	Н	-3.88582000	-3.96264000	1.16636000
Н	-0.23546500	2.09355900	1.98418900	С	-2.63590900	-3.04425500	-0.31966700
С	0.86190100	1.74711000	3.80970600	Н	-3.04422500	-3.64552200	-1.12771200
Н	0.45433500	2.61134700	4.32151600				

Optimized T_1 structure for $[Ir(ppy^0)_2(N^{\wedge}N^1)]^+$ (1a)

Ir	0.38387400	-0.09696400	-0.09616800	С	2.31821800	0.68817200	4.26334100	
Ν	1.90586700	1.27929300	-0.94529500	Н	2.76807000	0.82555400	5.24174100	
Ν	-0.63051600	1.89527500	-0.34299300	С	2.67516200	-0.39422000	3.47777300	
Ν	-1.81016600	2.46052600	-0.04711200	Н	3.40482900	-1.11187500	3.83385800	
Ν	1.16828600	0.32175300	1.77075800	С	2.09157700	-0.57148200	2.21913600	
Ν	-0.37133500	-0.71827300	-1.87974100	С	2.38367400	-1.65460700	1.28776700	
С	3.15431000	0.90768100	-1.25673400	С	1.64669000	-1.63166900	0.07974800	
Н	3.38185100	-0.14402900	-1.11377800	С	1.89799900	-2.63473200	-0.86121600	
С	4.10122800	1.80297500	-1.73459500	Н	1.34692100	-2.65162100	-1.79646800	
Н	5.09922600	1.45340600	-1.97419200	С	2.84588600	-3.62524100	-0.61248800	
С	3.73996600	3.13696400	-1.89567000	Н	3.02367200	-4.39711500	-1.35634100	
Н	4.45456500	3.86394300	-2.26858300	С	3.56408500	-3.63899600	0.58374300	
С	2.44744100	3.52732200	-1.57370200	Н	4.29909200	-4.41492800	0.77260000	
Н	2.13149600	4.55801000	-1.69074800	С	3.33345600	-2.65429100	1.53285800	
С	1.54923800	2.57327000	-1.09788100	Н	3.89690500	-2.66977700	2.46150100	
С	0.17398200	2.89463200	-0.73565400	С	0.00602900	-0.30433400	-3.09230100	
С	-0.50746400	4.12291300	-0.68727600	Н	0.76320700	0.47230300	-3.11290900	
Н	-0.14151400	5.10573400	-0.94168200	С	-0.50534100	-0.82631200	-4.26925200	
С	-1.76990000	3.80050800	-0.24464900	Н	-0.15342700	-0.44398400	-5.21999900	
Н	-2.64940300	4.40532700	-0.08026400	С	-1.47151700	-1.86700100	-4.19790300	
С	-2.95812600	1.71550600	0.35547100	Н	-1.87139800	-2.30850400	-5.10433900	
С	-3.55733800	2.01707300	1.57549000	С	-1.88339500	-2.29954600	-2.96852200	
Н	-3.11814500	2.76706100	2.22679600	Н	-2.61933600	-3.09193700	-2.88393900	
С	-4.71467500	1.33911400	1.94389300	С	-1.36078000	-1.71976100	-1.77489900	
Н	-5.19045400	1.56454100	2.89298600	С	-1.74235000	-2.01972900	-0.46398900	
С	-5.25578700	0.37271000	1.09949500	С	-1.05689700	-1.24399700	0.59825300	
Н	-6.15882800	-0.15467200	1.39058800	С	-1.43438500	-1.46536300	1.92553400	
С	-4.64561500	0.08488600	-0.11897400	Н	-0.94253600	-0.91226900	2.72024600	
Н	-5.07047900	-0.66482900	-0.77820100	С	-2.41910800	-2.38470100	2.25504600	
С	-3.49330300	0.76114400	-0.50394300	Н	-2.70574500	-2.54370400	3.28927800	
Н	-3.01567700	0.56058000	-1.45702900	С	-3.04546200	-3.15773500	1.22432000	
С	0.82601600	1.37205500	2.53283000	Н	-3.79325100	-3.89547900	1.50296500	
Н	0.08096900	2.03715000	2.11177600	С	-2.71998400	-2.99554800	-0.09221000	
С	1.37434900	1.59499400	3.78287500	Н	-3.20490400	-3.60426800	-0.84860400	
Н	1.06377800	2.45564600	4.36409200					

Optimized S_0 structure for $[Ir(ppy^0)_2(N^{\wedge}N^7)]^+$ (7a)

Ir	0.04451300	-0.01078100	-0.05626600	С	2.88075700	0.09434200	-0.61991000
Ν	-1.68612800	-1.07194300	0.78869800	С	1.66311400	0.71906700	-0.98110000
Ν	-0.33878600	-1.66445400	-1.39465100	С	1.71628900	1.72374300	-1.95263200
Ν	-1.36454900	-2.47051800	-1.03052400	Н	0.80942000	2.24240000	-2.24947700
Ν	1.50036000	-1.14698100	0.85182000	С	2.92204300	2.08270600	-2.55038800
Ν	-1.26852600	1.30902200	-0.92989900	Н	2.93610900	2.86803700	-3.30147900
С	-2.36137000	-0.69096300	1.88461800	С	4.11278200	1.44980800	-2.19118500
Н	-1.96611400	0.18822200	2.38381200	Н	5.04910400	1.73509400	-2.65993400
С	-3.47652000	-1.37211300	2.34437400	С	4.09181200	0.45688600	-1.22435400
Н	-3.98938500	-1.03193700	3.23661500	Н	5.02125700	-0.03077100	-0.94368000
С	-3.91410600	-2.48795400	1.63438800	С	-1.89316400	1.09873700	-2.09984000
Н	-4.78571000	-3.04575100	1.96138500	Н	-1.66323100	0.16191500	-2.59454900
С	-3.23061100	-2.88489200	0.49380900	С	-2.76447000	2.01800300	-2.65412800
Н	-3.56087600	-3.74270800	-0.07927100	Н	-3.24212800	1.80566400	-3.60370600
С	-2.11768600	-2.14338900	0.10827500	С	-2.99747300	3.20789200	-1.96503500
С	-1.48251900	-3.51812100	-1.89500700	Н	-3.67318000	3.95598800	-2.36790100
Н	-2.23905700	-4.27775200	-1.77442000	С	-2.35048600	3.42907500	-0.76170500
С	-0.49852500	-3.37555900	-2.84057200	Н	-2.51021800	4.35151700	-0.21589500
Н	-0.29960200	-4.02997800	-3.67544200	С	-1.47501500	2.46755900	-0.24527400
С	0.19209700	-2.20099800	-2.48206700	С	-0.71327500	2.57863300	0.99162500
Н	1.04022300	-1.72151100	-2.95081000	С	0.14281300	1.48492900	1.27047500
С	1.27303000	-2.04604200	1.82264000	С	0.91284600	1.55263500	2.43677800
Н	0.24011400	-2.15487000	2.13263600	Н	1.59608200	0.74534000	2.68394700
С	2.28496200	-2.78327500	2.40860200	С	0.82956900	2.64815700	3.29333300
Н	2.05184800	-3.49467700	3.19247500	Н	1.44155700	2.67621700	4.19098300
С	3.59223200	-2.57913800	1.96717900	С	-0.02576900	3.71307700	3.00770300
Н	4.41547300	-3.13724200	2.40226200	Н	-0.08479100	4.56473000	3.67784500
С	3.83033400	-1.64971300	0.97022000	С	-0.79607600	3.67852300	1.85561800
Н	4.83979000	-1.46939900	0.61998700	Н	-1.45715800	4.51168800	1.63356900
С	2.77011700	-0.92594800	0.41279700				

Optimized T_1 structure for $[Ir(ppy^0)_2(N^{\wedge}N^7)]^+$ (7a)

Ir	0.02850200	-0.09036500	-0.02032600	С	-1.99854500	-2.08635400	-0.44922100
Ν	0.43104000	1.97881900	0.52858600	С	-0.68493300	-1.73447900	-0.87383700
Ν	-0.93611200	1.13989800	-1.53642900	С	-0.05584900	-2.54485500	-1.83356300
Ν	-0.81939600	2.47929300	-1.35919100	Н	0.94091300	-2.29271700	-2.18236800
Ν	-1.79784300	-0.16872700	0.92302400	С	-0.69000600	-3.67184500	-2.33875000
Ν	1.86089800	-0.13854100	-0.93289800	Н	-0.18953200	-4.29374100	-3.07509800
С	1.07080600	2.38942500	1.65950800	С	-1.97477700	-4.01159600	-1.90160000
Н	1.61775500	1.61552800	2.18772300	Н	-2.46841500	-4.89232400	-2.30040300
С	1.03800900	3.68028400	2.11531600	С	-2.62618800	-3.22426500	-0.95834000
Н	1.59058600	3.94506900	3.00932700	Н	-3.62079100	-3.50813200	-0.62793500
С	0.27599600	4.64767100	1.40673400	С	2.11511200	0.34315800	-2.16007700
Н	0.19217500	5.66587100	1.76866100	Н	1.26871200	0.76739800	-2.68810900
С	-0.37247200	4.25877000	0.25325100	С	3.37861400	0.29347500	-2.72135300
Н	-0.97746100	4.96005700	-0.31210500	Н	3.53933900	0.69587800	-3.71496900
С	-0.25524500	2.93693600	-0.17998200	С	4.41967000	-0.27698100	-1.98661100
С	-1.34260600	3.14499100	-2.42748500	Н	5.42107400	-0.33629400	-2.40024100
Н	-1.30198200	4.22046800	-2.49445000	С	4.15699500	-0.76565700	-0.71627300
С	-1.81745200	2.19077800	-3.31209000	Н	4.95041500	-1.20795900	-0.12479700
Н	-2.29386900	2.37311700	-4.26330000	С	2.86742500	-0.68350100	-0.19001500
С	-1.53650000	0.95799600	-2.72611500	С	2.44513100	-1.13273800	1.12727800
Н	-1.72725400	-0.04384800	-3.08157400	С	1.05831400	-0.93505700	1.42360100
С	-2.22807600	0.72531300	1.82559700	С	0.58324400	-1.35848700	2.68231900
Н	-1.53415300	1.52108200	2.07263600	Н	-0.46389700	-1.22271400	2.93403500
С	-3.48037800	0.63530200	2.40883700	С	1.43238300	-1.94809700	3.60422000
Н	-3.78911000	1.37869500	3.13470000	Н	1.05251000	-2.26877700	4.56954300
С	-4.31491900	-0.41934400	2.04055100	С	2.78705800	-2.13418200	3.29383600
Н	-5.30233900	-0.52136400	2.47943100	Н	3.44966100	-2.59557100	4.01960000
С	-3.86922100	-1.33885300	1.10436900	С	3.29035100	-1.73244700	2.06116200
Н	-4.50370400	-2.16413200	0.80286400	Н	4.34124000	-1.89355800	1.84070700
С	-2.59805000	-1.20188100	0.54366400				

Optimized S₀ structure for $[Ir(ppy^1)_2(N^{\wedge}N^7)]^+$ (7b)

Ir	0.18749000	-0.23252700	-0.07405300	Н	2.65769300	3.90013900	-3.49087500
F	-1.42137400	2.79399500	4.08428900	С	1.67008800	3.43448000	-1.64625200
F	0.86197800	4.93174700	0.63326000	Н	1.67537300	4.45220100	-1.28363300
F	-3.61037100	1.59150200	-3.43134600	С	1.09218400	2.43036900	-0.85785000
F	-4.92740600	-1.44038600	-0.15013100	С	0.45850000	2.59702000	0.44186500
Ν	0.76388600	-1.98607900	-1.18691900	С	-0.09354600	1.41914900	1.01536100
Ν	1.97796500	-2.49395600	-0.86544000	С	-0.72866000	1.50457800	2.25412400
Ν	2.18653600	-0.76033200	0.65663600	Н	-1.17794500	0.64036000	2.73019200
Ν	1.07987000	1.14461400	-1.31214000	С	-0.81094200	2.73060800	2.90214700
Ν	-0.87967000	-1.45769000	1.18644000	С	-0.27996100	3.89834400	2.37168500
С	0.23880500	-2.80702100	-2.08303900	Н	-0.35484000	4.84583700	2.89054100
Н	-0.74305700	-2.59901200	-2.48462400	С	0.34601000	3.80437300	1.14394600
С	1.12323100	-3.86816500	-2.35780100	С	-0.34474700	-2.12007600	2.22456200
Н	0.97536800	-4.69092800	-3.04044200	Н	0.71804500	-1.97534200	2.38029400
С	2.21942700	-3.63864300	-1.56514400	С	-1.09198800	-2.92958400	3.05889400
Н	3.13290400	-4.20018700	-1.44636500	Н	-0.61513200	-3.43989400	3.88778100
С	2.76678500	-1.82494400	0.08346800	С	-2.45574800	-3.05745200	2.80185800
С	4.05533900	-2.24492300	0.39980300	Н	-3.08046400	-3.68133200	3.43350700
Н	4.50126500	-3.10418900	-0.08614700	С	-3.01514900	-2.37703000	1.73398700
С	4.75977200	-1.52381900	1.35332900	Н	-4.07113400	-2.45709600	1.52026200
Н	5.76684000	-1.82609600	1.62190200	С	-2.21277100	-1.56509400	0.92053100
С	4.16701300	-0.41434800	1.95142900	С	-2.64736400	-0.77202200	-0.21864200
Н	4.68953600	0.17377400	2.69701100	С	-1.63980300	0.00412200	-0.85134300
С	2.88195000	-0.06519600	1.57134300	С	-1.98416300	0.80456200	-1.93940200
Н	2.36392200	0.78882300	1.99541800	Н	-1.25761400	1.42573900	-2.45061500
С	1.60772600	0.84692800	-2.51021700	С	-3.29823800	0.82336200	-2.38875000
Н	1.54091200	-0.19318600	-2.80840400	С	-4.30589400	0.07230800	-1.79914100
С	2.18574000	1.80032700	-3.32721500	Н	-5.32528000	0.10021300	-2.16323600
Н	2.59388800	1.51298300	-4.28936100	С	-3.95497700	-0.71277800	-0.71859300
С	2.21595700	3.11959000	-2.87924100				

Optimized T_1 structure for $[Ir(ppy^1)_2(N^{\wedge}N^7)]^+$ (7b)

Ir	0.00251400	0.20281100	-0.08985900				
F	-2.03807900	-1.98179900	4.36217100	С	-3.39078000	-1.99088000	2.45670000
F	-4.70714000	-1.98748000	0.54425700	Н	-4.18317100	-2.49710500	2.99560700
F	1.21544400	-4.21226300	-2.92316900	С	-3.54870700	-1.65621100	1.12121700
F	4.03962100	-3.06462400	0.59774000	С	1.59524400	1.23920000	2.25351400
Ν	1.30195200	1.41964200	-1.34895300	Н	0.80469600	1.98159600	2.25815200
Ν	1.11064100	2.75780500	-1.25593600	С	2.63696700	1.26972900	3.16481900
Ν	-0.63768300	2.25764000	0.17739200	Н	2.67622900	2.05604000	3.90975700
Ν	-1.50345800	-0.00699600	-1.46061200	С	3.61067900	0.27621500	3.09364400
Ν	1.49804300	0.28581600	1.31545600	Н	4.44181000	0.26703000	3.79162400
С	2.21214900	1.22558500	-2.31893100	С	3.51276600	-0.70894600	2.12263000
Н	2.51643800	0.22205300	-2.57722100	Н	4.25721200	-1.48884700	2.05119200
С	2.61782500	2.45141800	-2.84384600	С	2.43982000	-0.69572600	1.22601500
Н	3.33501200	2.62412500	-3.63175300	С	2.18396300	-1.65158000	0.15605100
С	1.89373100	3.41165400	-2.15701900	С	1.02324000	-1.41576200	-0.64044900
Н	1.84507300	4.48322300	-2.26933600	С	0.70746400	-2.28277100	-1.69263100
С	0.22231600	3.22151300	-0.29784800	Н	-0.15828200	-2.12327700	-2.32535600
С	0.19812100	4.54415700	0.14016000	С	1.51500200	-3.38300900	-1.92941300
Н	0.94106000	5.24618500	-0.22469000	С	2.64349700	-3.65347800	-1.16059000
С	-0.77039100	4.93524500	1.04348200	Н	3.26452300	-4.51954400	-1.35676500
Н	-0.80512700	5.95498200	1.40844500	С	2.95381700	-2.78240100	-0.12895400
С	-1.70730900	3.96496000	1.49123900	С	-3.54870700	-1.65621100	1.12121700
Н	-2.50921900	4.23164800	2.17012700	С	1.59524400	1.23920000	2.25351400
С	-1.59675900	2.67187400	1.05783800	Н	0.80469600	1.98159600	2.25815200
Н	-2.27826600	1.89939400	1.39745100	С	2.63696700	1.26972900	3.16481900
С	-1.43212700	0.43316600	-2.72583900	Н	2.67622900	2.05604000	3.90975700
Н	-0.50199800	0.91288600	-3.00793800	С	3.61067900	0.27621500	3.09364400
С	-2.47767200	0.27551600	-3.61905400	Н	4.44181000	0.26703000	3.79162400
Н	-2.37761600	0.64693900	-4.63250000	С	3.51276600	-0.70894600	2.12263000
С	-3.63822400	-0.36125200	-3.18363900	Н	4.25721200	-1.48884700	2.05119200
Н	-4.47577600	-0.50614600	-3.85822900	С	2.43982000	-0.69572600	1.22601500
С	-3.71802100	-0.80930600	-1.87280700	С	2.18396300	-1.65158000	0.15605100
Н	-4.60988000	-1.30038400	-1.51011300	С	1.02324000	-1.41576200	-0.64044900
С	-2.63723500	-0.61849100	-1.00787200	С	0.70746400	-2.28277100	-1.69263100
С	-2.55577400	-1.00055800	0.39208800	Н	-0.15828200	-2.12327700	-2.32535600
С	-1.32643700	-0.67904000	1.05811300	С	1.51500200	-3.38300900	-1.92941300
С	-1.16336300	-1.01881500	2.41315200	С	2.64349700	-3.65347800	-1.16059000
Н	-0.25019500	-0.79127000	2.95064100	Н	3.26452300	-4.51954400	-1.35676500
С	-2.18733200	-1.66164000	3.08150000	С	2.95381700	-2.78240100	-0.12895400

Fig. S1. Spin density distribution (0.003 e bohr⁻³) and net spin value located on iridium(III) center calculated for the ${}^{3}MC$ excited states of **1a-7a** and **1b-7b**.

Fig. S2. electron density contours (0.035 e Bohr⁻³) calculated for the unoccupied e_g molecular orbital of **1a-7a** and **1b-7b**. showing σ -antibonding interactions along the vertical N_{ppy}-Ir-N_{ppy} axis.