Electric Supplemental Information for:

Monolacunary Keggin Polyoxometalates Connected to Ten 4d or

4f Metal Atoms

Haijun Pang^{a,b}, Carlos J. Gómez-García^c, Jun Peng^a*, Huiyuan Ma^b, Chunjing Zhang^d

and Qingyin Wu^e

Table of contents:

- 1. Fig. S1. Coordination modes of Ce^{3+} and Ag^+ cations in 1, page S1.
- 2. Fig. S2. The detailed coordination environments of $Ag1^+$ and $Ag2^+$ cations, page S1.
- 3. **Fig. S3.** Combined polyhedral/ball and stick and space-filling diagrams of **1** showing the 2D channels along [100] (left) and [010] (right) directions, page S2.
- 4. Table S1. Summaries of calculated values from BVS for the metal centers in 1 and 2, page S2.
- 5. Fig. S4. The UV spectra of 1, K₈SiW₁₁O₃₉, AgNO₃ and Ce(NO₃)₃ in aqueous solution.
- 5. Fig. S5. The TG curves: 1 (left) and 2 (right), page S3.
- 6. Fig. S6. The simulated (red) and experimental (black) XRPD patterns of 1 and 2, page S3.

Fig. S1. Coordination modes of Ce^{3+} and Ag^+ cations in **1**.

Fig. S2. The detailed coordination environments of $Ag1^+$ and $Ag2^+$ cations.

Fig. S3. Combined polyhedral/ball/stick and space-filling diagrams of 1 showing the 2D channels along [100] (left) and [010] (right) directions.

Compound 1	atom	R_0	BVS	Compound 2	atom	R_0	BVS
(Ag-Ce-SiW ₁₁)	Ag1	1.805	1.06	(Ag-Pr-SiW ₁₁)	Ag1	1.805	1.28
	Ag2	1.805	0.95		Ag2	1.805	0.98
	Ce1	2.094	2.67		Pr1	2.138	3.26
	Ce2	2.094	2.75		Pr2	2.138	3.32
	W1	1.921	6.38		W1	1.921	6.15
	W2	1.921	6.26		W2	1.921	5.88
	W3	1.921	6.25		W3	1.921	6.11
	W4	1.921	6.07		W4	1.921	5.90
	W5	1.921	6.02		W5	1.921	6.19
	W6	1.921	6.20		W6	1.921	6.39
	W7	1.921	5.93		W7	1.921	6.36
	W8	1.921	6.24		W8	1.921	6.26
	W9	1.921	6.22		W9	1.921	6.30
	W10	1.921	6.09		W10	1.921	6.42
	W11	1.921	6.45		W11	1.921	6.38

Table S1. Summary of calculated values from BVS for the metal centers in 1 and 2

Fig. S4. The UV spectra of 1, with control experiments of $K_8SiW_{11}O_{39}$ ·13H₂O,

AgNO₃ and Ce(NO₃)₃ aqueous solutions.

Fig. S6. The simulated (red) and experimental (black) XRPD patterns of 1 and 2.