SUPPLEMENTARY INFORMATION

Title: Copper(II) and Triphenylphosphine Copper(I) Ethylene Glycol Carboxylates: Synthesis, Characterisation and Copper Nanoparticle Generation

Authors: David Adner, Stefan Möckel, Marcus Korb, Roy Buschbeck, Tobias Rüffer, Steffen Schulze, Lutz Mertens, Michael Hietschold, Michael Mehring, and Heinrich Lang

Content

1	Precursor Characterisation	3
1.1	IR Spectra	3
1.2	NMR Spectra	5
1.3	X-Ray structure analysis	17
2	Thermal Characterisation	21
3	Additional TEM images	24

1 Precursor Characterisation

1.1 IR Spectra

All infrared spectra were recorded at ambient conditions as ATR-FTIR spectra by using a Biorad FTS-165 or a Nicolet iS 10 spectrometer from Thermo Scientific.

IR spectra of the carbonic acids 1d and 1e:

IR spectra of the copper(II) carboxylates 2a-e:

IR spectra of the tris(triphenylphosphine)copper(I) carboxylates **3a–e**:

IR Spectra of the bis(triphenylphosphine)copper(I) carboxylates **4a–e**:

Wave number [cm⁻¹]

1.2 NMR Spectra

All ¹H NMR spectra were recorded in CDCl₃ at 25 °C with a Bruker Avance III 500 spectrometer operating at 500.30 MHz in the Fourier transform mode; ¹³C{¹H} NMR spectra were recorded at 125.80 MHz. Chemical shifts are given relative to the internal standard tetramethylsilane (δ = 0.00 ppm).

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of 2-[2-(2-methoxyethoxy)ethoxy]-2-methylpropanoic acid (**1d**):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of 2-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}acetic acid (**1e**):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of tris(triphenylphosphine)copper(I)-2-methoxyacetate (**3a**):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of tris(triphenylphosphine)copper(I)-2-(2-methoxy-ethoxy)acetate (**3b**):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of tris(triphenylphosphine)copper(I)-2-[2-(2-methoxy-ethoxy)ethoxy]acetate (3c):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of tris(triphenylphosphine)copper(I)-2-[2-(2-methoxy-ethoxy)ethoxy]-2-methylpropanoate (**3d**):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of tris(triphenylphosphine)copper(I)-2-{2-[2-(2-methoxy-ethoxy]ethoxy]ethoxy}acetate (**3e**):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of bis(triphenylphosphine)copper(I)-methoxyacetate (**4a**):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of bis(triphenylphosphine)copper(I)-2-(2-methoxyethoxy)-acetate (**4b**):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of bis(triphenylphosphine)copper(I)-2-[2-(2-methoxy-ethoxy)ethoxy]acetate (**4c**):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of bis(triphenylphosphine)copper(I)-2-[2-(2-methoxy-ethoxy)ethoxy]-2-methylpropanoate (**4d**):

¹H (top) and ¹³C{¹H} (bottom) NMR spectra of bis(triphenylphosphine)copper(I)-2-{2-[2-(2-methoxy-ethoxy]ethoxy]ethoxy}acetate (**4e**):

1.3 X-Ray structure analysis

Data for single crystal X-ray diffraction analysis were collected with an Oxford Gemini S diffractometer at 110 K using Cu K_{α} (λ = 154.184 pm) radiation. All figures show ORTEP diagrams with 50 % probability level. Hydrogen atoms and solvent molecules are omitted for clarity. In case of disordered atoms, only one conformation is shown. Colour code: gray – carbon, red – oxygen, yellow – phosphorus, orange – copper.

Crystal structure of tris(triphenylphosphine)copper(I)-methoxyacetate (**3a**, CCDC 932853):

Crystal Data for 3a: $C_{57}H_{50}CuO_{3}P_{3}$, $M_{r} = 939.42 \text{ g} \cdot \text{mol}^{-1}$, crystal dimensions $0.40 \cdot 0.38 \cdot 0.30 \text{ mm}$, T = 115 K, $\lambda = 154.184 \text{ pm}$, orthorhombic, $Pna2_{1}$, a = 18.31189(10) Å, b = 13.00000(10) Å, c = 19.6264(2) Å, $V = 4672.13(6) \text{ Å}^{3}$, Z = 4, $\rho_{\text{calcd.}} = 1.336 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 1.984 \text{ mm}^{-1}$, ϑ range $= 4.08 - 62.91^{\circ}$, reflections collected: 9408, independent: 5316 ($R_{int} = 0.0209$), $R_{1} = 0.0340$, $wR_{2} = 0.0887$ [$I > 2\sigma(I)$].

Crystal structure of tris(triphenylphosphine)copper(I)-2-(2-methoxyethoxy)acetate (**3b**, CDCC 932858):

Crystal Data for 3b: $C_{255.60}H_{294.40}Cu_4O_{35.60}P_{12}$, $M_r = 4561.91 \text{ g} \cdot \text{mol}^{-1}$, crystal dimensions $0.40 \cdot 0.40 \cdot 0.20 \text{ mm}$, T = 110 K, $\lambda = 154.184 \text{ pm}$, monoclinic, C2/c, a = 41.396(3) Å, b = 12.6912(4) Å, c = 26.4725(18) Å, $\beta = 227.373(8)$ °, V = 12350.6(12) Å³, Z = 2, $\rho_{\text{calcd.}} = 1.227 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 1.659 \text{ mm}^{-1}$, ϑ range = 3.41 - 64.10 °, reflections collected: 32252, independent: 10102 ($R_{int} = 0.0415$), $R_1 = 0.0653$, $wR_2 = 0.1801 [I>2\sigma(I)]$.

Crystal structure of tris(triphenylphosphine)copper(I)-2-[2-(2-methoxyethoxy)ethoxy]2-methyl-propanoate (**3d**, CDCC 932854):

Crystal Data for 3a: $C_{64}H_{63}CuO_5P_3$, $M_r = 1174.94 \text{ g} \cdot \text{mol}^{-1}$, crystal dimensions $0.40 \cdot 0.38 \cdot 0.38 \text{ mm}$, T = 100 K, $\lambda = 154.184 \text{ pm}$, monoclinic, $P2_1/n$, a = 13.1082(6) Å, b = 22.7413(12) Å, c = 19.7501(11) Å, $\beta = 104.039(5)^\circ$, V = 5711.6(5) Å³, Z = 4, $\rho_{calcd.} = 1.366 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 3.022 \text{ mm}^{-1}$, ϑ range = $3.68 - 62.50^\circ$, reflections collected: 18682, independent: 9054 ($R_{int} = 0.0613$), $R_1 = 0.0816$, $wR_2 = 0.2237$ [$I > 2\sigma(I)$].

Crystal Data for 4a: $C_{39}H_{35}CuO_{3}P_{2}$, $M_{r} = 677.15 \text{ g} \cdot \text{mol}^{-1}$, crystal dimensions $0.20 \cdot 0.10 \cdot 0.05 \text{ mm}$, T = 110 K, $\lambda = 71.073 \text{ pm}$, triclinic, $P\overline{1}$, a = 12.4723(6) Å, b = 12.4970(7) Å, c = 12.7037(6) Å, $\alpha = 67.651(5)^{\circ}$, $\theta = 75.301(4)^{\circ}$, $\gamma = 62.402(5)^{\circ}$, $V = 1615.69(14) \text{ Å}^{3}$, Z = 2, $\rho_{\text{calcd.}} = 1.392 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 0.813 \text{ mm}^{-1}$, ϑ range = 2.97–25.75 °, reflections collected: 12298, independent: 6090 ($R_{int} = 0.0380$), $R_1 = 0.0390$, $wR_2 = 0.0805 [I > 2\sigma(I)]$.

Crystal Data for 4b: $C_{41}H_{39}CuO_4P_2$, $M_r = 721.20 \text{ g} \cdot \text{mol}^{-1}$, crystal dimensions $0.30 \cdot 0.20 \cdot 0.20 \text{ mm}$, T = 110 K, $\lambda = 154.184 \text{ pm}$, orthorhombic, *Pbca*, a = 21.2391(2) Å, b = 10.7028(1) Å, c = 30.5782(3) Å, $V = 6950.97(11) \text{ Å}^3$, Z = 8, $\rho_{calcd.} = 1.378 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 2.090 \text{ mm}^{-1}$, ϑ range = 3.56-62.94°, reflections collected: 11178, independent: $6420 (R_{int} = 0.0223)$, $R_1 = 0.0507$, $wR_2 = 0.1381 [I>2\sigma(I)]$.

Crystal Data for 4d: $C_{45}H_{47}CuO_5P_2$, $M_r = 793.31 \text{ g} \cdot \text{mol}^{-1}$, crystal dimensions $0.30 \cdot 0.25 \cdot 0.20 \text{ mm}$, T = 105 K, $\lambda = 154.184 \text{ pm}$, triclinic, $P\overline{1}$, a = 12.0902(10) Å, b = 13.2571(9) Å, c = 13.3691(10) Å, $\alpha = 86.456(6)^\circ$, $\theta = 89.537(7)^\circ$, $\gamma = 64.306(7)^\circ$, $V = 1926.8(3) \text{ Å}^3$, Z = 2, $\rho_{\text{calcd.}} = 1.367 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 1.954 \text{ mm}^{-1}$, ϑ range = $3.31-66.98^\circ$, reflections collected: 14265, independent: 6810 ($R_{int} = 0.0362$), $R_1 = 0.0549$, $wR_2 = 0.1424$ [$I > 2\sigma(I)$].

Crystal Data for 4e: $C_{45}H_{47}CuO_6P_2$, $M_r = 809.31 \text{ g} \cdot \text{mol}^{-1}$, crystal dimensions $0.20 \cdot 0.10 \cdot 0.10 \text{ mm}$, T = 104 K, $\lambda = 71.073 \text{ pm}$, monoclinic, $P2_1/n$, a = 15.9464(8) Å, b = 10.6978(3) Å, c = 23.2985(11) Å, V = 3972.8(3) Å³, Z = 4, $\rho_{calcd.} = 1.353 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 0.679 \text{ mm}^{-1}$, ϑ range = 2.88–25.50 °, reflections collected: 19549, independent: 7368 ($R_{int} = 0.0399$), $R_1 = 0.0354$, $wR_2 = 0.0814$ [$I > 2\sigma(I)$].

2 Thermal Decomposition

All thermogravimetric measurements were performed under N_2 flow (60 mL \cdot min⁻¹) with a heating rate of 10 K \cdot min⁻¹ with a Mettler Toledo TGA/DSC1 1600 system.

TG traces of tris(triphenylphosphine)copper(I) acetate hydrate as well as complexes 3a,c-e:

TG traces of bis(triphenylphosphine)copper(I) acetate hydrate as well as compounds 4a-e:

The non-volatile decomposition products of the thermal decompositions have been investigated by X-ray powder diffraction using a STOE-STAD IP device with Cu K_{α} (λ = 154.184 pm) radiation.

X-ray powder diffractogram of the non-volatile decomposition products of **2c**:

X-ray powder diffractogram of the non-volatile decomposition products of **4c**:

TG-MS characterisation of tris(triphenylphosphine)copper(I) 2-(2-methoxyethoxy)acetate (**3b**), measured by using a Pfeiffer Vacuum MS ThermoStar GSC 301 TS mass spectrometer coupled to the TG system:

3 Additional TEM images

All TEM measurements were performed with a PHILIPS CM 20 FEG instrument operated at 200 kV.

0.5 mM sample:

1.0 mM sample:

2.0 mM sample:

10 mM sample:

Electron diffractogram of 1.0 mM sample (red rings: copper, fcc, a = 3.61 Å):