Substitution of gadolinium ethylenediaminetetraacetate with phosphites: Towards gadolinium deposit in nephrogenic nystemic fibrosis

Song Gao, Mao-Long Chen, Zhao-Hui Zhou*

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China, Fax: +86 592 2183047; Tel: +86 592 2184531; E-mail: zhzhou@xmu.edu.cn

Fig. S1 S	olution ¹³ C NMR spectrum of K[La(edta)(H ₂ O) ₃]·5H ₂ O	2
Fig. S2 S	olution ¹³ C NMR spectrum of K ₄ edta	2
Fig. S3	Solution ³¹ P NMR spectrum of K _{3n} [La(EDTA) (HPO ₃)] _n ·7nH ₂ O (4)	3
Fig. S4	Solution ³¹ P NMR spectrum of Na ₆ [La ₂ (EDTA) ₂ (HPO ₃) ₂]·2.5NaCl ·21H ₂ O (5)	3
Fig. S5	IR spectrum of $K_{3n}[Gd(EDTA)(HPO_3)]_n \cdot 7nH_2O(1)$	4
Fig. S6	IR spectrum of $Na_6[Gd_2(EDTA)_2(HPO_3)_2]\cdot 2.5NaCl\cdot 21H_2O(2)$.	4
Fig. S7	IR spectrum of $(NH_4)_2Na[Gd(EDTA)(H_2cit)] \cdot 4H_2O(3)$	5
Fig. S8	IR spectrum of gadolinium phosphate	5
Fig. S9	TG-DTG curve of $K_{3n}[Gd(EDTA)(HPO_3)]_n \cdot 7nH_2O(1)$.	6
Fig. S10	TG-DTG curve of Na ₆ [Gd ₂ (EDTA) ₂ (HPO ₃) ₂]·2.5NaCl·21H ₂ O (2)	6

Fig. S1 Solution ¹³C NMR spectrum of K[La(edta)(H₂O)₃]·5H₂O

Fig. S2 Solution ¹³C NMR spectrum of K₄edta

Fig. S3 Solution ³¹P NMR spectrum of $K_{3n}[La(EDTA) (HPO_3)]_n \cdot 7nH_2O(4)$

Fig. S4 Solution ³¹P NMR spectrum of Na₆[La₂(EDTA)₂(HPO₃)₂]·2.5NaCl ·21H₂O (5)

Fig. S5 IR spectrum of $K_{3n}[Gd(EDTA)(HPO_3)]_n \cdot 7nH_2O(1)$

Fig. S6 IR spectrum of $Na_6[Gd_2(EDTA)_2(HPO_3)_2] \cdot 2.5NaCl \cdot 21H_2O(2)$

Fig. S7 IR spectrum of $(NH_4)_2Na[Gd(EDTA)(H_2cit)]\cdot 4H_2O(3)$

Fig. S8 IR spectrum of gadolinium phosphate

Fig. S9 TG-DTG curve of $K_{3n}[Gd(EDTA)(HPO_3)]_n \cdot 7nH_2O(1)$

Fig. S10 TG-DTG curve of Na₆[Gd₂(EDTA)₂(HPO₃)₂]·2.5NaCl·21H₂O (**2**)