Electronic Supplementary Information

Di(imino)aryltin(IV) dichlorides as tectons for heterometallic coordination compounds

Ioana Barbul,^a Richard A. Varga,^{*a} Kieran C. Molloy^b and Cristian Silvestru^{*a}

^a Departamentul de Chimie, Centrul de Chimie Supramoleculară Organică și Organometalică (CCSOOM), Facultatea de Chimie și Inginerie Chimică, Universitatea Babeş-Bolyai, RO-400028, Cluj-Napoca, Romania. E-mail: <u>cristian.silvestru@ubbcluj.ro;</u> <u>pichy@chem.ubbcluj.ro;</u> Fax: (+40) 264-590818; Tel: (+40) 264-593833 ^a Department of Chemistry, University of Bath, Claveron Down, Bath BA2 7AY, UK. E-mail: <u>k.c.molloy@bath.ac.uk</u>; Fax: (+44) 1225-386231; Tel: (+44) 1225-386382

Numbering schemes for NMR resonance assignments

$[2-{(CH_2O)_2CH}C_6H_4]_2SnCl_2(1)$

- the crystal contains a 1:1 mixture of Δ -[$pS_{O(1)}pS_{O(3)}$]-[$S_{C(7)}R_{C(16)}$]-1 and Λ -[$pR_{O(1)}pR_{O(3)}$]-[$R_{C(7)}S_{C(16)}$]-1 isomers

Figure S1. Molecular structure of Δ -[$pS_{O(1)}pS_{O(3)}$]-[$S_{C(7)}R_{C(16)}$]-1 isomer (*left*) and Λ -[$pR_{O(1)}pR_{O(3)}$]-[$R_{C(7)}S_{C(16)}$]-1 isomer (*right*) in the crystal of 1, showing the intramolecular chlorine-hydrogen contacts (only methine hydrogens and hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance $Cl(1)\cdots H(6)_{aryl} 2.85 \text{ Å}$ $\sum r_{vdW}(Cl,H) 3.01 \text{ Å}$ $Cl(2)\cdots H(15)_{aryl} 2.88 \text{ Å}$

Figure S2. View along *a* axis of a chain polymer based on intermolecular chlorine-hydrogen contacts between alternating Δ -[$pS_{O(1)}pS_{O(3)}$]-[$S_{C(7)}R_{C(16)}$]-1 and Λ -[$pR_{O(1)}pR_{O(3)}$]-[$R_{C(7)}S_{C(16)}$]-1 isomers in the crystal of 1 (only hydrogen atoms involved in C–H···Cl contacts are shown) [symmetry equivalent atoms (0.5+x, 1.5-y, 0.5+z), (-0.5+x, 1.5-y, -0.5+z) and (-1+x, y, -1+z) are given by "a", "b" and "c", respectively].

- intermolecular distance $Cl(1)\cdots H(9Ab)_{methylene} 2.77 \text{ Å} \sum r_{vdW}(Cl,H) 3.01 \text{ Å} Cl(2)\cdots H(16a)_{methine} 2.90 \text{ Å}$

Figure S3. View along *b* axis of a chain polymer based on intermolecular chlorine-hydrogen contacts between alternating Δ -[$pS_{O(1)}pS_{O(3)}$]-[$S_{C(7)}R_{C(16)}$]-1 and Λ -[$pR_{O(1)}pR_{O(3)}$]-[$R_{C(7)}S_{C(16)}$]-1 isomers in the crystal of 1 (only hydrogen atoms involved in C–H···Cl contacts are shown) [symmetry equivalent atoms (0.5+x, 1.5-y, 0.5+z), (-0.5+x, 1.5-y, -0.5+z) and (-1+x, y, -1+z) are given by "a", "b" and "c", respectively].

Figure S4. View along a chain polymer in the crystal of **1** (only hydrogen atoms involved in $C-H\cdots Cl$ contacts are shown).

Figure S5. View of the 3D architecture in the crystal of **1**, based on chlorine-hydrogen, oxygen-hydrogen and C–H··· π (Ph_{centroid}) contacts between parallel chain polymers (only hydrogen atoms involved in such contacts are shown) [symmetry equivalent atoms (–0.5–*x*, 0.5+*y*, 0.5–*z*), (–*x*, 1–*y*, –*z*), (–1+*x*, *y*, *z*) and (–*x*, 1–*y*, –*z*) are given by "d", "e", "f" and "g", respectively].

- inter-chain distance

 $\begin{array}{lll} \text{Cl}(1) \cdots \text{H}(14d)_{aryl} \ 2.94 \ \text{\AA} & \sum r_{vdW}(\text{Cl},\text{H}) \ 3.01 \ \text{\AA} \\ \text{O}(4) \cdots \text{H}(8\text{Ae})_{methine} \ 2.53 \ \text{\AA} & \sum r_{vdW}(\text{O},\text{H}) \ 2.60 \ \text{\AA} \\ \text{C}(3f) - \text{H}(3f)_{aryl} \cdots \text{Ph}_{centroid} \{\text{C}(10) - \text{C}(15)\} \ 2.98 \ \text{\AA} \\ & \gamma = 4.7^{\circ} \\ \text{C}(18g) - \text{H}(18Bg)_{methine} \cdots \text{Ph}_{centroid} \{\text{C}(10) - \text{C}(15)\} \ 2.83 \ \text{\AA} \\ & \gamma = 16.8^{\circ} \end{array}$

[2-(O=CH)C₆H₄]₂SnCl₂ (2)

- the crystal contains a 1:1 mixture of Δ -2 and Λ -2 isomers

Figure S6. Molecular structure of Δ -2 isomer (*left*) and Λ -2 isomer (*right*) in the crystal of 2, showing the intramolecular chlorine-hydrogen contacts (only carbonyl hydrogens and hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance $Cl(1)\cdots H(6)_{aryl} 2.87 \text{ Å} \sum r_{vdW}(Cl,H) 3.01 \text{ Å} Cl(2)\cdots H(13)_{aryl} 2.84 \text{ Å}$

Figure S7. View along *a* axis of a dimer association of Δ -2 and Λ -2 isomers based on intermolecular chlorine-hydrogen contacts in the crystal of 2 (only carbonyl hydrogens and hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (*-x*, *1*–*y*, 2–*z*) are given by "prime"].

- intermolecular distance $Cl(2)\cdots H(4')_{aryl} 2.93 \text{ Å}$ $\sum r_{vdW}(Cl,H) 3.01 \text{ Å}$

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

Figure S8. View along *a* axis of a ribbon-like polymer of dimers based on inter-dimer chlorine-hydrogen contacts in the crystal of **2** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (-x, 1-y, 2-z), (x, y, 1+z), (-x, 1-y, 3-z), (x, y, -1+z) and (-x, 1-y, 1-z) are given by "prime", "a", "prime a", "b" and "prime b", respectively].

- inter-dimer distance
- $Cl(1)\cdots H(14a)_{carbonyl} 2.95 \text{ Å}$

Figure S9. View along c axis of a ribbon-like polymer of dimers based on inter-dimer chlorine-hydrogen contacts in the crystal of 2 (only hydrogen atoms involved in intermolecular contacts are shown).

Figure S10. View along *a* axis of a layer based on inter-chain oxygen-hydrogen contacts in the crystal of **2** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (1-x, 1-y, 1-z) are given by "prime d"].

- inter-chain distance $O(1) \cdots H(7'd)_{carbonyl} 2.53 \text{ Å}$ $\sum r_{vdW}(O,H) 2.60 \text{ Å}$
- no further contacts between parallel layers.

Figure S11. View along c axis of a layer based on inter-chain oxygen-hydrogen contacts in the crystal of 2 (only hydrogen atoms involved in intermolecular contacts are shown).

[2-(2',4',6'-Me₃C₆H₂N=CH)C₆H₄]₂SnCl₂ (4)

- H32B H32B H32B H30A H6 H14C H1
- **Figure S12.** Molecular structure of Δ -4 isomer (*left*) and Λ -4 isomer (*right*) in the crystal of 4, showing the intramolecular chlorine-hydrogen and C–H··· π (Ph_{centroid}) contacts (only imine hydrogens and hydrogen atoms involved in intramolecular contacts are shown).

Figure S13. View of a chain polymer of alternating Δ -4 and Λ -4 isomers based on intermolecular chlorine-hydrogen contacts in the crystal of 4 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (*x*, 0.5–*y*, 0.5+*z*), (*x*, 0.5–*y*, – 0.5+*z*) and (*x*, *y*, –1+*z*) are given by "a", "b" and "c", respectively].

- intermolecular distance

Cl(1)…H(19a)_{aryl} 2.89 Å Cl(2)…H(32Ca)_{methyl} 2.93 Å $\sum r_{vdW}$ (Cl,H) 3.01 Å

- the crystal contains a 1:1 mixture of Δ -4 and Λ -4 isomers

Figure S14. View along *c* axis of a chain polymer of alternating Δ -4 and Λ -4 isomers in the crystal of 4.

Figure S15. View along *b* axis of a layer based on inter-chain chlorine-hydrogen and C–H··· π (Ph_{centroid}) contacts in the crystal of **4** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (–*l*+*x*, *y*, *z*) and (*l*+*x*, *y*, *z*) are given by "d" and "e", respectively].

- inter-chain distance

Cl(2)···H(3e)_{aryl} 2.91 Å
$$\sum r_{vdW}$$
(Cl,H) 3.01 Å
C(30)-H(30B)_{methyl}···Ph_{centroid}{C(17d)-C(22d)} 2.92 Å
 $\gamma = 10.0^{\circ}$

Figure S16. View along *c* axis of a layer based on inter-chain chlorine-hydrogen and C–H··· π (Ph_{centroid}) contacts in the crystal of **4** (only hydrogen atoms involved in intermolecular contacts are shown).

- no further contacts between parallel layers.

[2-(PhCH₂N=CH)C₆H₄]₂SnCl₂ (5)

- the crystal contains a 1:1 mixture of Δ -5 and Λ -5 isomers

Figure S17. Molecular structure of Δ -5 isomer (*left*) and Λ -5 isomer (*right*) in the crystal of 5, showing the intramolecular chlorine-hydrogen contacts (only imine hydrogens and hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance

 $Cl(1)\cdots H(6)_{aryl} 2.90 \text{ Å}$ $Cl(2)\cdots H(20)_{aryl} 2.86 \text{ Å}$ $\sum r_{vdW}$ (Cl,H) 3.01 Å

Figure S18. View along *a* axis of a *zig-zag* chain polymer of Λ -**5** isomers based on intermolecular chlorine-hydrogen and C–H··· π (Ph_{centroid}) contacts in the crystal of **5** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (0.5–x, -0.5+y, 1.5–z), (0.5–x, 0.5+y, 1.5–z) and (x, 1+y, z) are given by "a", "b" and "c", respectively].

- intermolecular distance

Cl(2)···H(10a)_{aryl} 2.95 Å
$$\sum r_{vdW}$$
(Cl,H) 3.01 Å
C(11)-H(11)_{aryl}···Ph_{centroid}{C(1b)-C(6b)} 2.75 Å $\gamma = 7.5^{\circ}$

Figure S19. View along *b* axis of a *zig-zag* chain polymer of Λ -**5** isomers based on intermolecular chlorine-hydrogen contacts in the crystal of **5** (only hydrogen atoms involved in intermolecular contacts are shown).

Figure S20. View along *c* axis of a layer based on C–H··· π (Ph_{centroid}) contacts between alternating chains of Δ -**5** and Λ -**5** isomers, respectively, in the crystal of **5** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (0.5–*x*, – 0.5+*y*, 1.5–*z*), (0.5–*x*, 0.5+*y*, 1.5–*z*), (*x*, 1+*y*, *z*) and (1.5–*x*, –0.5+*y*, 1.5–*z*) are given by "a", "b", "c" and "d", respectively].

- inter-chain distance $C(19)-H(19)_{aryl}\cdots Ph_{centroid}\{C(23d)-C(28d)\}\ 2.76 \text{ Å}$ $\gamma = 6.6^{\circ}$

Figure S21. View along *b* axis of a layer based on C–H··· π (Ph_{centroid}) contacts between alternating chains of Δ -5 and Λ -5 isomers, respectively, in the crystal of 5 (only hydrogen atoms involved in intermolecular contacts are shown).

- no further contacts between parallel layers.

[2-(Me₂NCH₂CH₂N=CH)C₆H₄]₂SnCl₂ (6)

- the crystal contains a 1:1 mixture of Δ -6 and Λ -6 isomers

Figure S22. Molecular structure of Δ -**6** isomer (*left*) and Λ -**6** isomer (*right*) in the crystal of **6**, showing the intramolecular chlorine-hydrogen contacts (only imine hydrogens and hydrogen atoms involved in intramolecular contacts are shown).

Figure S23. View along *b* axis of a chain polymer of Λ -**6** isomers based on intermolecular chlorine-hydrogen contacts in the crystal of **6** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (-1+x, y, z), (1+x, y, z) and (2+x, y, z) are given by "a", "b" and "c", respectively].

Figure S24. View along *a* axis of a chain polymer of Λ -**6** isomers based on intermolecular chlorine-hydrogen contacts in the crystal of **6** (only hydrogen atoms involved in intermolecular contacts are shown).

Figure S25. View along *c* axis of a wave-like layer based on C–H··· π (Ph_{centroid}) contacts between parallel chains of A-**6** isomers in the crystal of **6** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (-1+x, *y*, *z*), (1+x, *y*, *z*), (2+x, *y*, *z*) and (0.5+x, -0.5+y, 0.5-z) are given by "a", "b", "c" and "d", respectively].

- inter-chain distance $C(10)-H(10C)_{methyl}\cdots Ph_{centroid}\{C(12d)-C(17d)\} 2.82 \text{ Å}$ $\gamma = 12.3^{\circ}$

Figure S26. View along *b* axis of a wave-like layer based on C–H··· π (Ph_{centroid}) contacts between parallel chains of A-6 isomers in the crystal of 6 (only hydrogen atoms involved in intermolecular contacts are shown).

- no further contacts between parallel layers of Δ -6 and Λ -6 isomers, respectively.

Figure S27. View along *b* axis of parallel wave-like layers of Δ -**6** and Λ -**6** isomers, respectively, in the crystal of **6** (only hydrogen atoms involved in intermolecular contacts are shown).

$[2-(2'-PyCH_2N=CH)C_6H_4]_2SnCl_2$ (7)

- the crystal contains a 1:1 mixture of Δ -7 and Λ -7 isomers

Figure S28. Molecular structure of Δ -7 isomer (*left*) and Δ -7 isomer (*right*) in the crystal of **6**, showing the intramolecular chlorine-hydrogen contacts (only imine hydrogens and hydrogen atoms involved in intramolecular contacts are shown). The occupancy degree is: 0.93 for N2 (0.07 for C10B) / 0.93 for C10 (0.07 for N2B) and 0.74 for N4 (0.26 for C23B) / 0.74 for C23 (0.26 for N4B).

- intramolecular distance

 $\begin{array}{c} Cl(1) \cdots H(6)_{aryl} \ 2.85 \ {\rm \AA} \\ Cl(2) \cdots H(19)_{aryl} \ 2.92 \ {\rm \AA} \end{array}$

$[Cl_2Pd\{2\textbf{-}(2'\textbf{-}PyCH_2N\textbf{=}CH)C_6H_4\}_2SnCl_2]\textbf{\cdot}CH_3CN\ (8\textbf{\cdot}CH_3CN)$

- the crystal contains a 1:1 mixture of Δ -8 and Λ -8 isomers

Figure S29. Molecular structure of Δ -8 isomer (*left*) and Λ -8 isomer (*right*) in the crystal of 8·CH₃CN, showing the intramolecular chlorine-hydrogen and C–H··· π (Ph_{centroid}) contacts (only imine hydrogens and hydrogen atoms involved in intramolecular contacts are shown; the solvent molecule is omitted).

- intramolecular distance $Cl(2)\cdots H(19)_{aryl} 2.81 \text{ Å} \qquad \sum r_{vdW}(Cl,H) 3.01 \text{ Å}$ $Cl(3)\cdots H(21B)_{methylene} 2.74 \text{ Å}$ $C(8)-H(8B)_{methylene} \cdots Ph_{centroid} \{C(14)-C(19)\} 2.97 \text{ Å}$ $\gamma = 25.5^{\circ}$

Figure S30. View along *a* axis of a dimer association of Δ -8 and Λ -8 isomers based on intermolecular C–H··· π (Ph_{centroid}) contacts in the crystal of 8·CH₃CN (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (*1–x, 1–y, 1–z*) are given by "prime"].

- intermolecular distance

C(23)-H(23)_{aryl}···Ph_{centroid}{C(14')-C(19')} 2.61 Å
$$\gamma = 2.8^{\circ}$$

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Figure S31. View along *a* axis of a ribbon-like polymer of dimers based on inter-dimer chlorine-hydrogen interactions in the crystal of **8**·CH₃CN (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (1-x, 1-y, 1-z), (-1+x, -1+y, -1+z), (-x, -y, -z), (1+x, 1+y, 1+z) and (2-x, 2-y, 2-z) are given by "prime", "a", "prime a", "b" and "prime b", respectively].

- inter-dimer distance $Cl(3) \cdots H(13'a)_{aryl} 2.65 \text{ Å} \sum r_{vdW}(Cl,H) 3.01 \text{ Å}$

Figure S32. View along *a* axis of a layer based on inter-chain chlorine-hydrogen interactions in the crystal of **8**·CH₃CN (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (1-x, 1-y, 1-z), (-x, -y, -z), (1+x, 1+y, 1+z), (1-x, 1-y, -z) and (x, y, 1+z) are given by "prime", "prime a", "b", "prime c" and "d", respectively].

- inter-chain distance $Cl(2)\cdots H(7'c)_{imine} 2.75 \text{ Å}$

Figure S33. View along chain polymers of a layer based on inter-chain chlorine-hydrogen interactions in the crystal of $8 \cdot CH_3CN$ (only hydrogen atoms involved in intermolecular contacts are shown).

Figure S34. View of the 3D architecture in the crystal of $8 \cdot CH_3CN$, based on chlorinehydrogen contacts between parallel layers (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (-x, 1-y, -z) are given by "prime e"].

- inter-layer distance

Cl(4)…H(11'e)_{aryl} 2.83 Å