Electronic supplementary information (ESI)

for

Lanthanide(III) complexes of aminoethyl-DO3A as PARACEST contrast

agents based on decoordination of the weakly bound amino group

Tereza Krchová,^a Jan Kotek,^a* Daniel Jirák,^b Jana Havlíčková,^a Ivana Císařová,^a Petr Hermann^a

^{*a*} Department of Inorganic Chemistry, Universita Karlova (Charles University), Hlavova 2030, 128 40 Prague 2, Czech Republic. Tel: +420-22195-1261. Fax: +420-22195-1253. E-mail: <u>modrej@natur.cuni.cz</u>.

^b Department of Radiodiagnostic and Interventional Radiology, Magnetic Resonance Unit, Institute of Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Prague 4, Czech Republic.

Dogo

Content:

	I age
Fig. S1 Molecular structure of H_3L^2 found in the crystal structure of $H_3L^2 \cdot 6H_2O$.	2
Fig. S2 Molecular structure of H_3L^3 found in the crystal structure of $H_3L^3 \cdot 3.5H_2O$.	2
Table S1 Torsion angles in the macrocyclic units found in the crystal structures of	3
$H_{3}L^{1} \cdot 5H_{2}O, H_{3}L^{2} \cdot 6H_{2}O \text{ and } H_{3}L^{3} \cdot 3.5H_{2}O.$	
Fig. S3 The distribution diagram of H_3L^1 .	3
Fig. S4 ¹ H NMR chemical shifts dependence of H_3L^1 on pH.	4
Scheme S1 Protonation scheme of H_3L^1 .	4
Fig. S5 Distribution diagram of the $La^{3+}:H_3L^1$ system.	5
Fig. S6 Distribution diagram of the Gd^{3+} :H ₃ L ¹ system.	5
Fig. S7 ¹ H NMR spectra of $[Eu(H_2O)(L^1)]$ at different temperatures.	6
Fig. S8 ¹ H NMR spectra of $[Yb(L^{1})]$ at different temperatures.	7
Fig. S9 Disorder of the $[Yb(L^1)]$ molecule found in the solid-state structure of	
$[Yb(L^1)] \cdot 5H_2O.$	8
Table S2 Selected geometric parameters found in the structure of $[Yb(L^1)] \cdot 5H_2O$.	8
Fig. S10 ¹ H NMR spectra of $[Eu(H_2O)(L^1)]$ in H ₂ O, in H ₂ O with presaturation of the bulk	
water signal and in D_2O .	9
Fig. S11 Z-spectra of aq. solution of $[Eu(H_2O)(L^1)]$ and $[Yb(L^1)]$ complexes at different	
temperatures (85 °C, 95 °C).	10
Fig. S12 Z-spectra of aq. solution of $[Eu(H_2O)(L^2)]$ and $[Yb(L^2)]$ complexes at different pH	
and temperatures.	10
Fig. S13 Z-spectra of aq. solution of $[Eu(H_2O)(L^3)]$ and $[Yb(L^3)]$ complexes at different pH	
and temperatures.	11
Fig. S14 MRI-CEST images of phantoms containing aq. solutions of $[Eu(H_2O)(L^1)]$ and	
$[Yb(L^1)]$ with different concentrations.	12
Fig. S15 pH dependence of normalized intensity of the CEST effect of phantoms containing	
aqueous solutions of $[Eu(H_2O)(L^1)]$ and $[Yb(L^1)]$.	13
Fig. S16 Concentration dependence of normalized intensity of the CEST effect of phantoms	
containing aqueous solutions of $[Eu(H_2O)(\mathbf{L}^1)]$ and $[Yb(\mathbf{L}^1)]$.	13
Fig. S17 ¹ H NMR spectrum of H_3L^1 .	14
Fig. S18 ${}^{13}C{}^{1}H$ NMR spectrum of H_3L^1 .	14
Fig. S19 ¹ H NMR spectrum of H_3L^2 .	15
Fig. S20 ¹³ C{ ¹ H} NMR spectrum of H_3L^2 .	15
Fig. S21 ¹ H NMR spectrum of H_3L^3 .	16
Fig. S22 ¹³ C{ ¹ H} NMR spectrum of H_3L^3 .	16

Fig. S1 Molecular structure of H_3L^2 found in the crystal structure of $H_3L^2 \cdot 6H_2O$. Dashed lines show system of intramolecular hydrogen bonds. Carbon-bound hydrogen atoms are omitted for sake of clarity.

Fig. S2 Molecular structure of H_3L^3 found in the crystal structure of $H_3L^3 \cdot 3.5H_2O$. Dashed lines show system of intramolecular hydrogen bonds. Carbon-bound hydrogen atoms are omitted for sake of clarity.

Torsion angle, °	H_3L^1	H_3L^2	H_3L^3
N1-C2-C3-N4	-49.71(13)	-47.30(16)	-53.54(13)
C2-C3-N4-C5	170.56(10)	168.61(12)	166.59(9)
C3-N4-C5-C6	-88.19(11)	-90.39(14)	-90.36(11)
N4-C5-C6-N7	-63.19(12)	-64.59(15)	-58.02(12)
C5-C6-N7-C8	153.42(10)	154.47(11)	159.90(9)
C6-N7-C8-C9	-73.43(12)	-73.59(14)	-76.06(12)
N7-C8-C9-N10	-58.24(13)	-55.17(16)	-58.50(13)
C8-C9-N10-C11	167.89(10)	167.82(12)	163.69(9)
C9-N10-C11-C12	-78.57(12)	-78.52(14)	-80.67(11)
N10-C11-C12-N1	-62.61(12)	-67.48(14)	-68.79(12)
C11-C12-N1-C2	159.05(9)	158.99(11)	160.83(9)
C12-N1-C2-C3	-76.48(12)	-73.82(15)	-66.10(12)

Table S1 Torsion angles in the macrocyclic units found in the crystal structures of $H_3L^1 \cdot 5H_2O$, $H_3L^2 \cdot 6H_2O$ and $H_3L^3 \cdot 3.5H_2O$.

Fig. S3 The distribution diagram of H_3L^1 .

Fig. S4 pH dependence of $d_{\rm H}$ of ${\rm H}_3{\rm L}^1$ ($B_0 = 14.1$ T, 25 °C). Dependence of chemical shifts of protons 1 and 4 were not included as they are overlapping with other signals. At pH below 9, individual protons of CH₂ groups 2 and 3 became nonequivalent resulting in two signals for each of groups.

Scheme S1 Consecutive protonation scheme of H_3L^1 .

Fig. S5 Distribution diagram of the La³⁺:H₃L¹ ($c_{\rm M} = c_{\rm L} = 0.004$ M) system (I = 0.1 M (NMe₄)Cl, 25 °C); determined by potentiometry, L = (L¹)³⁻.

Fig. S6 Distribution diagram of the $\text{Gd}^{3+}:\text{H}_3\text{L}^1$ ($c_{\text{M}} = c_{\text{L}} = 0.004 \text{ M}$) system (I = 0.1 M (NMe₄)Cl, 25 °C); determined by potentiometry, $\text{L} = (\text{L}^1)^{3-}$.

Fig. S7 ¹H NMR spectra of $[Eu(H_2O)(L^1)]$ (0.1 M solution in D₂O, $B_0 = 7.05$ T for 25, 50 and 90 °C and 9.4 T for 0 °C; pD = 9.0). A coaxial capillary with D₂O and *t*-BuOH was used as external standard ($d_H = 1.25$ ppm). Signals assignment: A = HDO in sample solution, B = HDO in capillary, C = *t*-BuOH in capillary

Fig. S8 ¹H NMR spectra of [Yb(L^1)] (0.1 M solution in D₂O, $B_0 = 7.05$ T for 25, 50 and 90 °C and 9.4 T for 0 °C; pD = 8.5). A coaxial capillary with D₂O and *t*-BuOH was used as external standard ($d_H = 1.25$ ppm). Signals assignment: A = HDO in sample solution, B = HDO in capillary, C = *t*-BuOH in capillary.

A

Fig. S9 Disorder of the $[Yb(L^1)]$ molecule found in the solid-state structure of $[Yb(L^1)] \cdot 5H_2O$. Figure shows overlay of both disordered complex species, more abundant (85 %) TSA' isomer is represented using solid bonds and less abundant (15 %) SA' isomer using dashed bonds. A: Top view. B: Side view. Carbon-bound hydrogen atoms are omitted for clarity reasons. Colour code: Yb – green; N – blue; O – red; C – black; H – grey.

Table S2 Geometric parameters of coordination sphere of Yb^{3+} ion in the crystal structure of $[Yb(L^1)]$ ·5H₂O.

NQA – the centroid of the N₄-plane in TSA arrangement; NQC – the centroid of the N₄-plane in SA arrangement; OQ – the centroid of the O₃N-plane.

Fig. S10 A: ¹H NMR spectrum of $[Eu(H_2O)(L^1)]$ (~1 M solution in H₂O, $B_0 = 7.05$ T, 25 °C, pH = 7.9). **B**: ¹H NMR spectrum of $[Eu(H_2O)(L^1)]$ (~1 M solution in H₂O, $B_0 = 7.05$ T, 25 °C, pH = 7.9); water signal was saturated. **C**: ¹H NMR spectrum of $[Eu(H_2O)(L^1)]$ (~1 M solution in D₂O, $B_0 = 7.05$ T, 25 °C, pD = 7.9). In all spectra, a coaxial capillary with D₂O and *t*-BuOH was used. Chemical shift of H₂O in solution was referenced to 0 ppm.

Fig. S12 A,C: Z-spectra of a 25 mM aq. solution (H_2O/D_2O 1:10) of [Eu(H_2O)(L^2)] complex ($B_0 = 7.05$ T, satpwr = 29 dB~1000 Hz, satdly = 2 s). A: T = 298 K. C: pH = 8.16. B,D: Z-spectra of a 25 mM (B) or 50 mM (D) aq. solution (H_2O/D_2O 1:10) of [Yb(L^2)] complex ($B_0 = 7.05$ T, satpwr = 29 dB~1000 Hz, satdly = 2 s). B: T = 298 K. D: pH = 8.35.

Fig. S13 A,C: Z-spectra of 25 mM aq. solution (H_2O/D_2O 1:10) of [Eu(H_2O)(L^3)] complex ($B_0 = 7.05$ T, satpwr = 29 dB (~1000 Hz), satdly = 2 s); **A**: T = 298 K. **C**: pH = 5.40. **B,D**: Z-spectra of 50 mM aq. solutions (H_2O/D_2O 1:10) of the [Yb(L^3)] complex ($B_0 = 7.05$ T, satpwr = 29 dB (~1000 Hz), satdly = 2 s); **B**: T = 298 K, **D**: pH = 7.72.

Fig. S14 MRI-CEST images of phantom consisting of one vial containing 80 mM aq. solution of $[La(H_2O)(L^1)]$ as a standard and five vials containing aqueous solution of $[Eu(H_2O)(L^1)]$ and $[Yb(L^1)]$ with different concentrations; pH = 7.4; concentrations (mM) are given as labels in figures **A**. Experimental conditions: RARE pulse sequence, $B_0 = 4.7$ T, $B_1 = 20 \mu$ T, T = 293 K, satdly = 2 s, TR = 5 s, TE = 8.9 ms, scan time = 2 min. **I.A**: T_1 -weighted image, satfrq = 34 ppm from the bulk water signal. **I.B**: T_1 -weighted image, satfrq = -34 ppm from the bulk water signal. **I.C**: The difference between images **I.A** and **I.B** in false colours. **II.A**: T_1 -weighted image, satfrq = 89 ppm from the bulk water signal. **II.B**: T_1 -weighted image, satfrq = -89 ppm from the bulk water signal. **II.C**: The difference between images **II.A** and **II.B** in false colours.

Fig. S15 pH dependence of normalized intensity of the CEST effect (20 μ T, MRI 4.7 T). A: [Eu(H₂O)(L¹)], data from Fig. 5-I.C. B: [Yb(L¹)], data from Fig. 5-II.C.

Fig. S16 Concentration dependence of normalized intensity of the CEST effect (20 μ T, MRI 4.7 T). A: [Eu(H₂O)(L¹)], data from Fig S14-I.C. B: [Yb(L¹)], data from Fig. S14-II.C.

Characterization ¹H and ¹³C{¹H} NMR spectra of the ligands

Fig. S20 ¹³C NMR spectrum of H_3L^2 in D_2O , pD = 5.6.

Fig. S22 ¹³C{¹H} NMR spectrum of H_3L^3 in D_2O , pD = 4.8.