ESI for:

Spectroscopic Properties of Zn(Salphenazine) Complexes and their Application in Small Molecule Solar Cells

Giovanni Salassa,^a James W. Ryan,^a Eduardo C. Escudero-Adán,^a and Arjan W. Kleij*^{a,b}

^a Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans

16, 43007 - Tarragona (Spain). E-mail: akleij@iciq.es; Fax: +34 977920828; Tel: +34 977920247.

^b Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluís

Companys 23, 08010, Barcelona, Spain.

CONTENTS:

Page S2:	Extension of parts of the DFT-calculated structure for complex 9
Page S4:	Figure S1.
Page S5:	Figure S2.
Page S6:	Figure S3.
Page S7:	EDDMs of transitions 7, 13 and 14 for complex 1. THF.
Page S9:	TD-DFT and relative EDDMs of transitions 1-4 for complex $10 \cdot \text{THF}$
Page S12:	Cyclic voltammetry for complex 1.
Page S13:	NMR spectra (copies) for complexes 1, 2, 3, 5, 8 and 9.
Page S29:	Representative MALDI(+) MS spectra.

Extension of parts of the DFT-calculated structure for complex 9:

Central part of the structure showing the octanuclear Zn_8 core. Zn atoms in purple and orange.

Figure S1:

Figure S1: Comparison between absorption spectra of 1 in different solvents at a concentration of 1×10^{-5} M.

Figure S2:

Figure S2: UV-Vis comparisons: (A) between di-substituted 5 and tetra-substituted 1; (B) comparison between tetra-substituted complexes 1-4. All UV-Vis spectra were recorded in THF at a concentration of 1×10^{-5} M.

Figure S3: UV-Vis comparisons between di-substituted complexes 5-7:

Figure S3: UV-Vis comparisons between di-substituted complexes 5-7.

EDDMs of transitions 7, 13 and 14 for complex $1 \cdot \text{THF}$:

Transition 7:

Energy = 3.18 eV (389 nm)

 $f = 0.92; \text{H-}3 \rightarrow \text{LUMO}(69\%)$

Transition 13:

Energy = 3.79 eV (327 nm)

 $f = 0.48; \text{H-}2 \rightarrow \text{L+}1 (75\%)$

Transition 14:

Energy = 3.94 eV (315 nm)

 $f = 0.36; \text{H-}3 \rightarrow \text{L+}1 (75\%)$

Calculated absorption spectra and relative EDDMs of transitions 1-4 for complex **10**. THF:

The calculated spectra of complex 10 (vide infra), even though slightly overestimates the energy of the transitions, shows that the lowest absorption band is formed by 4 different transitions (EDDMs next page). In particular it has been observed that transition 2 (398 nm page S10) has a π - π * character with the electron density migrates from the two phenyl side groups towards the phenyl backbone. This type of transition, characterized by a charge transfer, is equivalent to the transition 2 in complex 1 (511 nm, see **Fig 8C**) but in the case of the latter the more extended π -system of the phenazine provoke a red-shift. Same considerations can be done for transition 3 of complex 10 (389 nm, see page S11) and transition 7 (395 nm, see page S7) of 1, but in this case the transitions are characterized by π - π * with no charge transfer character. Since this reason the more extended π -conjugated system of 1 causes a blue-shift of this transition.

Transition 1:

Energy = 2.92 eV (424 nm) f = 0.26; HOMO→LUMO (87%)

Transition 2:

Energy = 3.16 eV (398 nm)

 $f = 0.33; \text{H-1} \rightarrow \text{LUMO} (92\%)$

Transition 3:

Energy = 3.27 eV (395 nm)

f = 0.32; HOMO \rightarrow L+1 (93%)

Transition 4:

Energy = 3.37 eV (368 nm)

f = 0.02; H-1 \rightarrow L+1 (87%)

Cyclic voltammetry for complex 1:

Electric potential [V] vs. Fc+/Fc

<u>Conditions used:</u> degassed CH_3CN , r.t., NBu_4PF_6 (0.1 M) as electrolyte. See further the experimental conditions in the main text described under "Differential Pulse Voltammetry" in the Experimental section.

Full NMR trace (DMSO-*d*₆)

Aromatic region (DMSO- d_6)

Full NMR trace (DMSO- d_6)

Aliphatic region: the peaks at δ = 3.33 and 2.55 ppm indicate MeOH and DMSO solvent impurities.

Full NMR trace (DMSO- d_6)

Aliphatic region: the peak at $\delta = 2.55$ ppm indicates a DMSO solvent impurity.

Aliphatic region: the peaks at δ = 3.51 and 2.55 ppm indicate MeOH and DMSO solvent impurities.

Full NMR trace (DMSO- d_6)

Aliphatic region: the peaks around 3.44 ppm indicate a MeOH solvent impurity.

Aliphatic region (DMSO-*d*₆): no sign of DMSO/MeOH impurities.

Full NMR trace (DMSO-*d*₆)

Aliphatic region (DMSO- d_6): MeOH impurity located at $\delta = 3.17$ ppm.

Representative MALDI(+) MS spectra:

Chemical Formula: C₁₀₄H₅₆N₁₆O₁₆Zn₈ Exact Mass: 2295,84 Molecular Weight: 2308,70

Full trace; zoom on the next page.

