Supporting Information

Group (IV) complexes containing the benzotriazole phenoxide ligand as catalysts for the ring-opening polymerization of lactides, epoxides and as precatalysts for the polymerization of ethylene

Sreenath Pappuru, Eswara Rao Chokkapu, Debashis Chakraborty* and Venkatachalam Ramkumar

Department of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, Tamil Nadu, India. E-mail: dchakraborty@iitm.ac.in; Fax: +914422574202; Tel: +914422574223

Fig. S1.¹H NMR (500 MHz, CDCl₃) of Compound 1

4

Fig. S2. ¹³C NMR (125 MHz, CDCl₃) of Compound 1

Fig. S3. ESI-Mass Spectrum of Compound 1

Fig. S4.¹H NMR (500 MHz, CDCl₃) of Compound 2

Fig. S5. ¹³C NMR (125 MHz, CDCl₃) of Compound 2

Fig. S6. ESI-Mass Spectrum of Compound 2

Fig. S7.¹H NMR (500 MHz, CDCl₃) of Compound 3

Fig. S8. ¹³C NMR (125 MHz, CDCl₃) of Compound 3

Fig. S9. ESI-Mass Spectrum of Compound 3

Fig. S10.¹H NMR (500 MHz, CDCl₃) of Compound 4

Fig. S11. ¹³C NMR (125 MHz, CDCl₃) of Compound 4

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Fig. S12. ESI-Mass Spectrum of Compound 4

Fig. S13.¹H NMR (500 MHz, CDCl₃) of Compound 5

Fig. S14. ¹³C NMR (125 MHz, CDCl₃) of Compound 5

Fig. S15. ESI-Mass Spectrum of Compound 5

Fig. S16. ¹H NMR (500 MHz, CDCl₃) of Compound 6

Fig. S17. ¹³C NMR (125 MHz, CDCl₃) of Compound 6

Fig. S18. ESI-Mass Spectrum of Compound 6

Fig. S19. 1 H NMR (500 MHz, CDCl₃) of Compound 7

Fig. S20. ¹³C NMR (125 MHz, CDCl₃) of Compound 7

Fig. S21. ESI-Mass Spectrum of Compound 7

Fig. S22. $^1\!\mathrm{H}$ NMR (500 MHz, CDCl_3) of Compound 8

Fig. S23. ¹³C NMR (125 MHz, CDCl₃) of Compound 8

Fig. S24. ESI-Mass Spectrum of Compound 8

Fig. S25.¹H NMR (500 MHz, CDCl₃) of Compound 9

Fig. S26. ¹³C NMR (125 MHz, CDCl₃) of Compound 9

Fig. S27. ESI-Mass Spectrum of Compound 9

Fig. S28. ¹H NMR (500 MHz, CDCl₃) of Compound 10

Fig. S29. ¹³C NMR (125 MHz, CDCl₃) of Compound 10

Fig. S30. ESI-Mass Spectrum of Compound 10

Fig. S31. $^1\mathrm{H}$ NMR (500 MHz, CDCl_3) of Compound 11

Fig. S32. ¹³C NMR (125 MHz, CDCl₃) of Compound 11

Fig. S33. ESI-Mass Spectrum of Compound 11

Fig. S34. $^1\!\mathrm{H}$ NMR (500 MHz, CDCl_3) of Compound 12

Fig. S35. ¹³C NMR (125 MHz, CDCl₃) of Compound 12

Fig. S36. ESI-Mass Spectrum of Compound 12

Fig. S37. Molecular structure of **11**; thermal ellipsoids were drawn at 30 % probability level, hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (\circ): Zr(1)–O(1), 1.9702(9), Zr(1)–O(1)i 1.9702(9), Zr(1)–N(1) 2.3731(16), Zr(1)–N(1)i 2.3731, Zr(1)–Cl(1) 2.4135(4), Zr(1)–Cl(1)i 2.4135(4), O(1)–Zr(1)–N(1) 75.30(4), O(1)i–Zr(1)–N(1)i 75.30(4).

Fig. S38. Molecular structure of **12**; thermal ellipsoids were drawn at 30 % probability level, hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (\circ): Hf(1)–O(1), 1.958(8), Hf(1)–O(2) 1.971(7), Hf(1)–N(1) 2.295(9), Hf(1)–N(4) 2.392(8), Hf(1)–Cl(1) 2.385(4), Hf(1)–Cl(2) 2.403(4), O(1)–Hfi(1)–N(1) 76.6(3), O(2)–Hf(1)–N(4) 76.0(3).

Table I	Crystal	data	for the structures	1,4	1, 7,	10,	11	and	12
---------	---------	------	--------------------	-----	-------	-----	----	-----	----

Compounds	1	4	7	10	11	12
Molecular formula	$C_{22}H_{31}N_3O_4Zr$	C73H64N12O4Zr	C73H64Hf N12O4	C ₅₉ H ₄₈ Cl ₄ N ₁₂ O ₄ Ti	$C_{26}H_{20}Cl_2N_6O_2Zr$	C26H20Cl2Hf N6O2
Formula weight	492.72	1264.58	1351.85	1226.69	610.60	697.87
T/K	173(2) K	173(2) K	173(2) K	173(2) K	173(2) K	173(2) K
Wavelength (Å)	0.71073A	0.71073 A	0.71073 A	0.71073 A	0.71073 A	0.71073 A
Crystal system,	Monoclinic,	Monoclinic,	Monoclinic,	Triclinic,	Monoclinic,	Monoclinic,
Space group	C2/c	P2(1)/c	P2(1)/c	P-1	C2/c	Cc
a/ Å	17.9699(8)	12.5037(4)	12.5729(7)	12.0351(5)	18.6144(15)	18.5596(6)
b/ Å	12.6633(6)	30.0814(10)	29.9689(16)	12.7717(6)	10.8807(8)	10.9098(3)
c/ Å	22.2998(10)	17.0526(6)	17.1728(9)	18.3390(8)	15.4550(12)	15.4502(5)
α (°)	90	90	90	103.316(2)	90	90
β (°)	111.613(2)	109.807(2)	109.688(2)	93.616(2)	124.471(3)	124.5010(10)
γ (°)	90	90	90	91.888(2)	90	90
$V/Å^3$	4717.7(4)	6034.5(4)	6092.4(6)	2734.3(2)	2580.6(3)	2578.15(14)
Z, Calculated density $(g \text{ cm}^{-3})$	8, 1.387 Mg/m^3	4, 1.392 Mg/m^3	4, 1.474 Mg/m^3	2, 1.490 Mg/m^3	4,1.572 Mg/m^3	4, 1.798 Mg/m^3
Absorption coefficient(mm ⁻¹)	0.497 mm^-1	0.246 mm^-1	1.776 mm^-1	0.549 mm^-1	0.670 mm^-1	4.290 mm^-1
θ range/°	2.43 to 28.47	1.89 to28.55	1.85 to 28.38	1.64 to 30.44	2.29 to 28.60	2.29 to 28.34
Reflections collected/unique	16386	44575	45634	40307	8798	8579
Independent reflections	5374	13796	14989	15262	3204	3569
Data/restraints/parameters	5374/0/ 272	13796 / 0 / 818	14989 / 5 / 818	15262 / 0 / 735	3204 / 0 / 169	3569 / 206 / 325
Goodness-of-fit on F2	1.018	1.081	1.177	1.019	1.041	1.044
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0421,	R1 = 0.0688,	R1 = 0.0358,	R1 = 0.0401,	R1 = 0.0235,	R1 = 0.0124,
	wR2 = 0.1039	wR2 = 0.1635	wR2 = 0.0735	wR2 = 0.0917	wR2 = 0.0624	wR2 = 0.0322
R indices (all data)	R1 = 0.0491,	R1 = 0.0839,	R1 = 0.0456,	R1 = 0.0628,	R1 = 0.0257,	R1 = 0.0127,
	wR2 = 0.1104	wR2 =0.1724	wR2 = 0.0772	wR2 = 0.1017	wR2 = 0.0639	wR2 = 0.0324
Max. and min. transmission	0.9071 and	0.9570 and	0.7766 and	0.9076 and	0.8777and	0.4808 and
	0.8453	0.9410	0.6652	0.8750	0.7994	0.3406

 $R_{I} = \sum |F_{0}| - |F_{c}| / \sum |F_{0}|, wR_{2} = [\sum (F_{0}^{2} - F_{c}^{2})^{2} / \sum w (F_{0}^{2})^{2}]^{1/2}$

Fig. S39. Homonuclear decoupled ¹H NMR (500 MHz, CDCl 3) spectrum of the methine region of PLA obtained using **1** (Table 2, Entry 1).

Fig. S40. Homonuclear decoupled 1 H NMR (500 MHz, CDCl₃) spectrum of the methine region of PLA obtained using 4 (Table 2, Entry 6).

Scheme I Mechanism of ring-opening polymerization initiated by complexes 4-9

Fig. S41. Plot of M_n and M_w/M_n vs. % conversion for L–LA and rac–LA polymerization at 140 °C using 1 and 4.

Fig. S42. ¹H NMR spectrum (500 MHz, CDCl₃) of the crude product obtained from a reaction between *rac*–LA and **4** in 20:1 ratio at 140 °C.

Fig. S43. MALDI-TOF spectrum of the crude product obtained from a reaction between *rac*–LA and **4** in 20:1 ratio at 140 °C.

Fig. S44. Intramolecular transesterification products present in MALDI-TOF spectrum of the crude product obtained from a reaction between *rac*-LA and complex **1** in 20:1 ratio at 140 °C.

1. Polymerization Details

1.1 Determination of molecular weights

Data concerning molecular weights (M_n) and the MWDs (M_w/M_n) of the polymer samples obtained by the ring-opening polymerization (ROP) of lactides (LA) and epoxides were determined by using a GPC instrument with Waters 510 pump and Waters 410 differential refractometer as the detector. Three columns namely WATERS STRYGEL-HR5, STRYGEL-HR4 and STRYGEL-HR3 each of dimensions (7.8 × 300 mm) were connected in series. Measurements were done in THF at 27 °C. In the case of LA number average molecular weights (M_n) and polydispersity (M_w/M_n) (MWDs) of polymers were measured relative to polystyrene standards with Mark-Houwink corrections.

Molecular weights (M_w) and the MWDs (M_w/M_n) of ethylene samples were determined by GPC instrument with Waters 510 pump and Waters 2414 differential refractometer as the detector. The column namely WATERS STRYGEL-HR4 of dimensions (4.6 × 300 mm) was connected during the experiment. Measurements were done in tri-chloro benzene (TCB). Number average molecular weights (M_n) and molecular weight distributions (MWDs) of polymers were measured relative to polystyrene standards.

1.2 Polymerization Kinetics

Bulk polymerization using 1, 2, 5, 8 and 11 were carried out at 140 °C under an argon atmosphere. At appropriate interval of time, 0.2 mL aliquots were removed from the reaction mixture, quenched and analysed by ¹HNMR. The [*rac*-LA]₀ /[*rac*-LA]_t ratio was calculated by integration of the peak corresponding to the methine proton for the monomer and polymer. Apparent rate constant were obtained from the slopes of the best-fit lines.

Fig. S45. rac-LA conversion vs time plot using 2, 5, 8 and 11: $[rac-LA]_0/[Cat]_0 = 200$ at 140 °C.

Complex	Positions	Mulliken	Complex	Positions	Mulliken
		Charge (Q/e)			Charge (Q/e)
	01	-0.834		01	-0.773
	02	-0.873		02	-0.775
	03	-0.861		03	-0.767
1	04	-0.858	4	04	-0.769
	N1	-0.306		N1	-0.301
	N2	-0.056		N4	-0.274
	N3	-0.261		N7	-0.273
	Zr	1.965		Zr	1.714
	01	-0.802		O1b	-0.587
	02	-0.801		O2b	-0.591
	03	-0.795		Cl1b	-0.126
7	04	-0.793	10	Cl2b	-0.425
	N11	-0.276		N1b	-0.285
	N14	-0.052		N4b	-0.054
	N17	-0.273		N6b	-0.250
	Hf	1.841		Ti	0.453
	01	-0.754		01	-0.790
	01 ⁱ	-0.754		02	-0.778
	Cl1	-0.275		Cl1	-0.303
11	Cl1 ⁱ	-0.275	12	Cl2	-0.296
	N1	-0.351		N1	-0.348
	N2	0.055		N2	0.031
	N3	-0.251		N3	-0.287
	Zr	1.229		Hf	1.351

Table II Computed Mulliken Net charges (Q/e) on various atoms of metal complexes 1, 4, 7, 10, 11 and 12.

Complex 1

Complex 4

Complex 10

-0,610

64

Complex 7

Fig. S47. ¹H NMR spectrum (500 MHz, CDCl₃) of the crude product obtained from a reaction between CHO and 1 in 1000:1 ratio at 100 $^{\circ}$ C.

Fig. S48. ¹H NMR spectrum (500 MHz, CDCl₃) of the crude product obtained from a reaction between PO and **1** in 1000:1 ratio at 30 °C.

Fig. S49. ¹H NMR spectrum (500 MHz, CDCl₃) of the crude product obtained from a reaction between SO and **1** in 1000:1 ratio at 130 °C.

Fig. S50. C^{13} {¹H} NMR spectrum (400 MHz, CDCl₃) showing the methine and methylene carbons for the regioirregular polymer obtained from a reaction between *rac*-PO and **1** in 1000:1 ratio at 30 °C.

Fig. S51. MALDI-TOF spectrum of the crude product obtained between a reaction of CHO and complex **1** in 1000:1 ratio at 100 °C.

Fig. S52. Plot of % Conversion and M_w/M_n vs. time (min) for CHO polymerization at 100 °C using 1, 2 and 3.

entry	Cat.	MAO:Cat	Yield ^a	Activity ^b	M_n^c	M _{w/} M _n
					(kg/mol)	
1	1	500	1.2	4.3	80.5	2.1
2	1	1000	1.8	7.0	140.1	2.8
3	1	1500	1.1	4.6	129.2	2.2
4	2	500	1.0	4.9	47.2	2.2
5	2	1000	1.5	7.5	118.0	2.5
6	2	1500	1.1	5.4	62.0	1.9
7	3	500	1.2	5.9	55.1	3.5
8	3	1000	1.2	6.0	111.5	2.5
9	3	1500	1.0	5.0	66.0	2.2
10	4	1000	0.8	3.2	87.4	2.6
11	5	1000	5.5	3.3	84.8	2.4
12	6	1000	5.3	3.1	76.8	3.1
13	7	1000	0.7	3.0	90.4	2.9
14	8	1000	4.8	3.0	82.6	2.7
15	9	1000	4.5	2.8	71.3	2.9
16	10	1000	2.4	5.4	102.1	3.7
17	11	1000	2.3	5.6	107.0	3.7
18	12	1000	1.5	4.1	80.6	4.8

Table III Data for the polymerization of ethylene catalyzed by complexes 1-12 with MAO

All experiments were performed in toluene at MAO:catalyst ratio = 1000, unless otherwise indicated. Ethylene pressure = 8 atm, 80 °C for 30 min, catalyst = 50 mg, solvent = 45 mL. ^{*a*} g of PE obtained after 30 min. ^{*b*}A = Activity in (g PE/mol cat × h) ×10⁴. ^{*c*}Determined by GPC in 1,2,4-C₆Cl₃H₃ vs narrow polystyrene standards.

Fig. S53. Activity obtained in the polymerization of ethylene using 2.