Supporting Information

Recent Developments in the Synthetic Chemistry of Technetium Disulfide

Maryline Ferrier^{*}, *William M. Kerlin, Frederic Poineau, Alfred P. Sattelberger and Kenneth R. Czerwinski*

1. Preparation of precursors

Caution. Techetium-99 is a weak beta emitter (Emax = 292 keV). All manipulations were performed in a radiochemistry laboratory at UNLV designed for chemical synthesis with radionuclides using efficient HEPA-filtered fume hoods and following locally approved radioisotope handling and monitoring procedures. The starting compound NH_4TcO_4 was purchased from Oak Ridge National Laboratory.

Starting compounds were prepared according to literature: Tc_2S_7 ⁻¹, Tc metal ², KTcO₄⁻³, $Tc_2(O_2CCH_3)_5$ ⁴ and K_2TcCl_6 ⁵. A lecture bottle of H₂S gas was obtained from Sigma-Aldrich all the other chemicals were used as received.

As the synthesis of ditechnetium penta-acetate has not been published yet, a brief description of the experimental is given:

In a glass vial was added KTcO₄ (50 mg, 0.25 mmol) and 7 mL of acetic acid, which was placed inside a 23 mL Teflon Parr Instruments 4749 autoclave. Sodium borohydride (250 mg, 6.6 mmol) was added external to the small glass vial with 200 μ L of deionized water. The autoclave was sealed and heated in an oven at 210 °C for 72 hrs. H_{2(g)} was produced in the reaction resulting in approximately 60 atm pressure in the autoclave. The reaction vessel was cooled to room temperature and opened revealing large purple crystals of Tc₂(μ -O₂CCH₃)₄(η -O₂CCH₃). The air stable product was rinsed 2 times with each of the following solvents: acetic acid, isopropanol and diethyl ether. The solid was dried in air and weighed (43.9 mg, yield = 72%).

2. EXAFS Spectroscopy

Measurements were performed at the Argonne National Laboratory Advanced Photon Source at the BESSRC-CAT 12 BM-B station. The solids were diluted (2 %) in mass in boron nitride (BN). The samples were placed in an aluminum sample holder equipped with Kapton windows. For the sample C the EXAFS spectra were recorded at the Tc-K edge (21, 044 eV) in fluorescence mode at room temperature using a 13-element germanium detector. For TcS₂, sample A and B, the EXAFS spectra were recorded in transmission mode. A double crystal of Si [1 1 1] was used as a monochromator. Rejections of harmonics were performed using rhodium mirrors. The energy was calibrated using a molybdenum foil. Fifteen scans were recorded in the k range [0 - 15] Å⁻¹ and averaged. The EXAFS spectra were extracted using the Athena software ⁶ and data analysis was performed using Winxas.⁷ For the fitting procedure, amplitude and phase shift functions were calculated by FEFF 8.2.⁸ Input files were generated by Atoms.⁹ The adjustments of the k³-weighted EXAFS spectra were under the constraints S₀² = 0.9.

3. Other techniques

Energy Dispersive X-ray (EDX) spectroscopy measurements were performed on a TECNAI-G2-F30 Supertwin transmission electron microscope with a 300 keV field emission gun; the samples were prepared by grinding the compound with hexane in an agate mortar, taking one drop of the solution and placing it onto a 3 mm diameter carbon film supported on a copper grid.

For ⁹⁹Tc elemental analyses, weighed amounts of the compounds (ca. 5 mg) were suspended in concentrated HClO₄ (5 mL) for several days. After complete dissolution, the solutions were diluted by 1000 with DI H₂O. ⁹⁹Tc concentrations were determined by liquid scintillation counting using a Packard 2500 scintillation analyzer. The scintillation cocktail was ULTIMA GOLD ABTM (Packard). The concentration of the solutions was determined using a calibration curve performed in solution with composition similar to the experimental parameters.

The powder X-ray Diffraction patterns were obtained using a Bruker D8 Advance diffractometer employing Cu K α_1 X-rays from 10 to 120° (2 θ) with a step size of 0.008° (2 θ) and 0.65 s/step. The samples (ca. 10-20 mg) were ground in an agate mortar, dispersed on a low-background silicon disk sample holder, covered with a radiological containment dome, and placed in the instrument for measurement.

4. Decomposition of Tc₂S₇ under flowing argon

An initial attempt to prepare TcS_2 from the thermal decomposition of Tc_2S_7 was performed in a flowing gas system under argon. A quartz boat containing Tc_2S_7 (105 mg) was place in a 50 cm quartz tube and heated at 1000 °C for an hour in a clamshell furnace. During the reaction, a yellow powder (sulfur) sublimed to the cold end of the tube. The black powder was weighted (53 mg) and analyzed by EXAFS spectroscopy. The spectrum was fitted using Tc-S and Tc-Tc scattering calculated in TcS₂ and Tc metal.

The XAFS analysis was compared to other solids: TcS_2 the reference compound used in the paper (thermal decomposition of Tc_2S_7 in a sealed tube with excess sulfur) and Tc_2S_7 (starting compound).

Results (Fig. S1) showed the solid to be a mixture of Tc metal and TcS_2 and different from the starting compound.

Fig. S1 Fitted k^3 -EXAFS spectra (top) and Fourier Transform of k^3 -EXAFS spectra (bottom) for the solids: TcS₂ 1st attempt (blue) compared to TcS₂ (red) and Tc₂S₇ (green). Fits are in black. Adjustment performed in the *k*-range [2; 12] Å⁻¹.

5. <u>LSC</u>

Table S1 LSC result and analysis

	TcS_2	Sample A	Sample B	Sample C
Mass compound analyzed [g]	0.0045	0.0042	0.0051	0.0044
Counts [CPM]	2055	1955	2308	1986
Concentration ⁹⁹ Tc before dilution [mol/L]	0.0054	0.0051	0.0061	0.0052
Mass Tc deducted [g]	0.0027	0.0025	0.0030	0.0026
% Tc in sample	0.5958	0.6066	0.5920	0.5885
Stoichiometry TcS_x , x =	2.09(6)	2.01(6)	2.13(6)	2.16(6)

6. <u>EDX</u>

Fig. S2 EDX spectra for Sample B (red) and Sample C (black). C and Cu peaks from the sample holder.

Table S2 Values of the EDX analyses of Sample B and Sample C shown in Fig. S2.

	Elements	Weight%	Atomic%	Stoichiometry
Sample B	S (K)	40.864	67.869	TaS
	Tc (K)	59.136	32.130	1052.11
Sample C	S (K)	43.425	70.116	TaS
	Tc (K)	56.574	29.883	1052.34

7. EXAFS adjustments

Table S3 Results for the adjustments for the scattering path Tc-Tc for samples B and C at fixed Tc-S scattering C.N. = 6 and $S_0^2 = 0.9$.

	Scattering path	C.N.	R [Å]	σ^2 [Å ²]	$\Delta E_0 [eV]$	Reduced chi ²
Sample B	Tc-Tc	3	2.79	0.0086	0.96	72.05
		2	2.79	0.0059	0.79	63.24
Sample C	Tc-Tc	3	2.75	0.0087	5.56	118.97
		2	2.75	0.0065	5.28	76.21

8. XRD structure of TcS₂

Fig. S3 Ball and stick representation of TcS₂: view along a-axis (A), along the b-axis (B), along the c-axis (C).

Fig. S4 Interatomic distances [Å] in TcS_2 determined by XRD. Tc0 represents the absorbing atom.

¹ E. E. Motta, G. E. Boyd and Q. V. Larson, *Phys. Rev.*, 1947, **72**, 1270.

² F. Poineau, E. E. Rodriguez, P. M. Foster, A. P. Sattelberger, A. K. Cheetham and K. R. Czerwinski, *J. Am. Chem. Soc.*, 2009, **13**, 910-911.

³ R. Busey, R. Bevan and R. Gilbert, J. Chem. Thermodynamics, 1972, 4(1), 77-84.

⁴ W. M. Kerlin et al., in progress.

⁵ J. Dalziel, N. S. Gill, R. S. Nyholm and R. D. Peacock, J. Chem. Soc., 1958, 4012-4016.

⁶ M. Newville, P. Livins, Y. Yacoby, E. A. Stern and J. J. Rehr, *Phys. Rev. B*, 1993, 47(21), 14126.

⁷ T. Ressler, J. Synchrotron Radiat., 1998, **5**(2), 118.

⁸ J. J. Rehr and R. C. Albers, *Rev. Mod. Phys.*, 2000, **72**, 621.

⁹ B. Ravel, J. Synchrotron Radiat., 2001, 8, 314.