Supporting Information

Octametallic 4f-phosphonate horseshoes

Karzan H. Zangana,^a Eufemio Moreno Pineda,^a Jürgen Schnack^b and Richard E. P. Winpenny^a*

- a. School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- b. Faculty of Physics, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany

Experimental Details

All reagents, metal salts and ligands were used as obtained from Aldrich. Analytical data were obtained by the microanalytical service of the University of Manchester.

Preparation of compounds 1 to 3

Compound 1 was synthesised by refluxing a mixture of pivalic acid (HO₂C^{*i*}Bu) (0.8 g, 7.83 mmol), Gd(NO₃)₃•6H₂O (0.25 g, 0.55 mmol), *tert*-butyl phosphonic acid (H₂O₃P^{*i*}Bu) (0.07 g, 0.51 mmol) and isopropylamine (^{*i*}PrNH₂) (0.1 mL, 1.16 mmol) in *iso*-butyl alcohol (^{*i*}BuOH) (15 ml) for 3 hrs to form a clear solution. The solution was filtered and then allowed to stand undisturbed at room temperature for four days. Colourless crystals of 1 suitable for X-ray were collected. Yield 150 mg (50 %), based on Gd(NO₃)₃•6H₂O. Elemental analysis for C₉₄H₁₉₇Gd₈N₂O₄₇P₆, found (calc); C 31.68 (31.79); H 5.41 (5.59); N 0.81 (0.79); Gd 35.38 (35.42); P 5.21 (5.23).

A similar procedure was used to synthesise **2** except that $Tb(NO_3)_3 \cdot 6H_2O$ was used in place of $Gd(NO_3)_3 \cdot 6H_2O$. Yield 165 mg (55%), based on $H_2O_3P'Bu$. Elemental analysis for $C_{94}H_{197}Tb_8N_2O_{47}P_6$, found (calc); C 31.77 (31.67); H 5.48 (5.57); N 0.83 (0.79); Gd 35.59 (35.67); P 4.16 (5.21).

A similar procedure was used to synthesise **3** except that $Dy(NO_3)_3 \cdot 5H_2O$ was used instead of $Gd(NO_3)_3 \cdot 6H_2O$. Yield 180 mg (59 %), based on $H_2O_3P^tBu$. Elemental analysis for, $C_{94}H_{197}Dy_8N_2O_{47}P_6$, found (calc); C 31.47 (31.41); H 5.49 (5.52); N 0.80 (0.78); Dy 36.25 (36.17); P 5.21 (5.17).

Crystallography

The data of 1 to 3 were collected on Agilent SuperNova CCD diffractometer with MoKa radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and refined on F2 using SHELXTL. CCDC 953479-953481 contain the supplementary crystallographic data for this These be obtained free of charge paper. data can via www.ccdc.cam.ac.uk/conts/retrieving.html (or from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

Crystal data for **1** [C₉₄H₁₉₅Gd₈N₂O₄₇P₆]: Mr = 3549.33, triclinic, space group *P*-1, *T* = 150.01 K, a = 14.0956(4), b = 24.0968(7), c = 26.5567(8) Å, $\alpha = 76.758(2)$, $\beta = 74.883(2)$, $\gamma = 82.741(2)$ °, V = 8455.2(4) Å³, Z = 2, $\rho = 1.393$ g cm⁻³, total data = 47337, independent reflections $34034[R_{(int)} = 0.0380]$, $\mu = 3.208$ mm⁻¹, 1284 parameters, $R_1 = 0.0640$ for $I \ge 2\sigma$ (I) and w $R_2 = 0.1717$.

Crystal data for **2** [C₉₄H₁₉₅Tb₈N₂O₄₇P₆]: *M*r = 3562.79, triclinic, space group *P*-1, *T* = 150.05 K, *a* = 14.0342(7), *b* = 24.0928(11), *c* = 26.4594(12) Å, *a* = 76.727(4), *β* = 75.084(4), γ = 82.955(4) °, *V* = 8394.9(7) Å³, *Z* = 2, *ρ* = 1.409 g cm⁻³, total data = 46176, independent reflections 33802 [*R*_(int) = 0.0899), μ = 3.441 mm⁻¹, 1206 parameters, *R*₁ = 0.0782 for *I* ≥2*σ* (I) and w*R*₂ = 0.2034.

Crystal data for **3** [C₉₄H₁₉₆Dy₈N₂O₄₇P₆]: *M*r = 3592.34, triclinic, space group *P*-1, *T* = 128.35 K, *a* = 14.0658(3), *b* = 24.0994(6), *c* = 26.4957(6) Å, *a* = 76.637(2), *β* = 75.300(2), *γ* = 83.1827(19) °, *V* = 8435.1(4) Å³, *Z* = 2, *ρ* = 1.414 g cm⁻³, total data = 67875, independent reflections 34418 [$R_{(int)}$ = 0.0407), *μ* = 3.614 mm⁻¹, 1253 parameters, R_1 = 0.0499 for *I* ≥2 σ (I) and w R_2 = 0.1293. All three compounds crystallise with large solvent voids and the electron density in these voids has been handled using SQUEEZE.

Magnetic measurements

The magnetic properties in the temperature range 1.8K-300K were performed on polycrystalline samples either constrained in eicosane or lastly powdered, using a Quantum Design MPMS-XL7 SQUID magnetometer armed with a 7 T magnet. Data were corrected for the diamagnetism of the compounds (Pascal constants) and for diamagnetic contribution of eicosane and the sample holder by measurement.

Figure S1. a) $M/N_{\mu\beta}$ magnetization of **2** at different temperatures; b) $M/N_{\mu\beta}$ magnetization of **3** at different temperatures.

Figure S2. Magnetic entropy change of 1.