Luminescent hybrid materials based on covalent attachment of Eu(III)-tris(bipyridinedicarboxylate) in the mesoporous silica host MCM-41

Maturi Ilibi,^a Thiago Branquinho de Queiroz,^b Jinjun Ren,^a Andrea Simone Stucchi de Camargo,^{b*} and Hellmut Eckert^{a,b*}

> ^aInstitut für Physikalische Chemie, WWU Münster Corrensstraße 28-30 D-48149 Münster, Germany

> > ^bPhysics Institute of São Carlos, University of São Paulo, São Carlos, SP 13566-590, Brazil.

Supporting Materials Section

Figure S1: activating scheme of the ligand : a) 2,2'- bipyridine-6,6'-bicarboxylic acid (L_2), b) NHS activated L_2

Figure S2: Adsorption-desorption isotherms of sample 1 (top, left), sample 2 (top right), sample 3 (bottom, left) and sample 4 (bottom, right).

Figure S3: Pore radius distribution of sample 1 (top, left), sample 2 (top, right), sample 3 (bottom, left), and sample 4 (bottom, right), determined via the Barret-Joyner-Halenda (BJH) method.

 Table S4.: Surface characterization data of Samples 1-4

Silica materials	Pore diameter	Mesoporous volume	BET surface area	
	[nm]	[cm ³ /g]	[m²/g]	
Sample 1	2.86	232	1012	
Sample 2	2.46	169	684	
Sample 3	2.24	147	638	
Sample 4	< 2	143	621	

Table S5: ²⁹Si signal area fractions observed in samples 1, 3, 4, and 5.

Materials	Q ⁴ (%)	Q ³ (%)	T ³ (%)	M ¹ (%)
Sample (1)	66.9	33.1	-	-
Sample (3)	74.7	1.7	14.1	9.5
Sample (4)	73.6	6.7	12.0	7.7
Sample (5)	73.3	7.3	12.0	7.4

Figure S6: ¹³C{¹H} CP-MAS NMR spectrum of sample **8**. Aside from solvent impurities (ethanol, methanol, marked by "+"), no signals arising from Eu bound ligands are observable.

Figure S7: Small-angle X-ray scattering data of samples 1 and 6, confirming retention of the mesoporous character after functionalization and complex formation within the mesopores.

Figure S8: Transmission electron micrographs of samples 1 and 6, confirming retention of the mesoporous character after functionalization and complex formation within the mesopores.