Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2014

Supporting Information

"Photosensitizing activity of ferrocenyl bearing Ni(II) and Cu(II) dithiocarbamates in dye

sensitized TiO₂ solar cells"

Vikram Singh[†], Ratna Chauhan[†], Ajit N. Gupta[†], Vinod Kumar[†], Michael. G. B. Drew[‡],

Lal Bahadur^{†*} and Nanhai Singh ^{†*}

[†]Department of Chemistry, Faculty of Science, Banaras Hindu University Varanasi 221005,

India

[‡]Department of Chemistry, The University of Reading, Whiteknights,

Reading, RG6 6AD, U.K.

Contents

- I. Crystal data table..... (Table S1).
- II. Cyclic voltammograms of the compounds 1, 2 and 3 recorded at scan rates (40-100 mV/s) in 10⁻³ M dichloromethane solution (0.1 M Bu₄NClO₄ was used as supporting electrolyte)...... (Fig.SI).
- III. Electrochemical Parameters Derived From the Voltammograms for (1-6)......(Table S2).

IV.¹H NMR and IR spectra of ligands and complexes...... (Fig. S2).

Table S1. Crystallographic Data and Structure Refinement Details for 1, 2, and 4.

	1	2	4			
Formula	$C_{34}H_{32}CuFe_2N_2O_2S_4$	$C_{40}H_{36}CuFe_2N_2O_4$	C ₃₄ H ₃₂ NiFe ₂ N ₂ O ₂ S ₄			
		S ₄				
Crystal System	Tetragonal	Triclinic	Tetragonal			
Space Group	P4 ₂ /n	P-1	P4 ₂ /n			
Formula weight	804.10	912.19	799.27			
Temperature(K)	293(2)	298(2)	293(2)			
Z	4	1	4			
a/(Å)	23.6577(12)	7.5963(13)	23.414(4)			
b/(Å)	23.6577(12)	11. 2271(8)	23.414(4)			
c/ (Å)	5.8825(4)	11.6787(19)	5.832(1)			
α/deg	(90)	84.763(9)	(90)			
^β / deg	(90)	77.404 (15)	(90)			
Y/deg	(90)	85.766(9)	(90)			
V(Å ³)	3292.4(4)	966.5 (2)	3197(1)			
D_{α} (g/cm ³)	1.622	1.567	1.660			
Crystal size (mm ³)	0.45 x 0.38x 0.30	0.45x 0.40 x 0.38	0.45 x 0.38 x 0.35			
F(000)	1644	467	1640			
Reflections collected	8002	7101	19350			
Unique reflections	3646 R(int) = 0.1000]	4220 [R(int) = 0.026]	3676 [R _{int} = 0.1219]			
μ (Μο Κα),	1.798	1.546	1.776			
Final R indices R [I >	R1 = 0.0787, wR2 =	R1 = 0.0445, wR2	R1 = 0.0706, wR2 = 0.1589			
2σ(I)]	0.0830	= 0.0819				
R indices [all data]	R1 = 0.2152, wR2 =	R1 = 0.074, wR2 =	R1 = 0.1403, wR2 = 0.1885			
	0.1097	0.0927				
Goodness-of-fit on <i>F</i> ²	0.907	1.007	0.994			
largest peak difference	0.423 and -0.403	0.283 and -0.366	0.860 and -0.498			
and hole /e Å ⁻³						
$R_{1} = \Sigma \ F0 - FC / \Sigma F0 . R_{2} = \{[\Sigma w (F_{0}^{2} - FC^{2}) / \Sigma w (F_{0}^{2})^{2}]\}^{1/2}, w = 1 / [\sigma^{2} (F_{0}^{2}) + (xP)^{2}], where P = (F_{0}^{2} + 2Fc^{2})/3$						

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2014

Fig. S1. Cyclic voltammograms of the compounds 1, 2 and 3 recorded at different scan rates (40-100mV/s) in 10^{-3} M dichloromethane solution (0.1 M Bu₄NClO₄ was used as supporting electrolyte).

Scan rate	$E_{p,a}$	$E_{\rm p,c}$	$\Delta E = E_{\rm p,a} - E_{\rm p,c}$	$E^0 = (E_{\rm p,a} + E_{\rm p,c})/2$		
(mVs ⁻¹)	(V)	(V)	(V)	(V)		
1						
40	0.29	0.18	0.10	0.23		
80	0.29	0.18	0.11	0.23		
100	0.30	0.18	0.12	0.24		
2						
40	0.36	0.23	0.13	0.29		
80	0.36	0.22	0.13	0.29		
100	0.36	0.22	0.14	0.29		
3						
40	0.30	0.21	0.09	0.26		
80	0.30	0.21	0.09	0.26		
100	0.31	0.21	0.09	0.26		
4						
40	0.40	0.30	0.10	0.35		
80	0.39	0.29	0.10	0.34		
100	0.38	0.28	0.10	0.33		
5						
40	0.38	0.27	0.11	0.32		
80	0.39	0.27	0.12	0.33		
100	0.39	0.27	0.12	0.33		
6						
40	0.33	0.24	0.09	0.28		
80	0.34	0.24	0.09	0.28		
100	0.34	0.24	0.10	0.29		

Table S2. Electrochemical Parameters Derived From the Voltammograms for (1-6).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

¹H NMR Spectra of the Ligands (L1-L3) and Complexes(1-6).

Fig.S2 (a) ¹H NMR of L1, potassium-N-methyl furfuryl-N-methyl ferrocenyl dithiocarabamate.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

Fig. S2 (b) 1 H NMR of 4, [Ni(FcCH₂NCS₂CH₂C₄H₃O)₂].

Fig. S2(c) ¹H NMR of L2, potassium-N-methylpiperonyl-N-methyl ferrocenyl dithiocarbamate.

Fig. S2(d) ¹H NMR of **5**, $[Ni(FcCH_2NCS_2CH_2C_7H_5O_2)_2]$.

Fig. S2 (e) ¹H NMR of L3, potassium-N-methylpyridyl-N-methylferrocenyl dithiocarbamate.

Fig. S2(f) ¹H NMR of 6, $[Ni(FcCH_2NCS_2CH_2C_5H_4N)_2]$.

Fig.S2 (g) IR specrum of 1, $[Cu(FcCH_2NCS_2CH_2C_4H_3O)_2]$.

Fig.S2 (h) IR spectrum of **2**, $[Cu(FcCH_2NCS_2CH_2C_7H_6O)_2]$.

Fig.S2(i). IR spectrum of **3**, $[Cu(FcCH_2NCS_2CH_2C_5H_4N)_2]$.