Electronic supplementary information

1

Photoinduced Intramolecular Energy Transfer and Anion Sensing Studies of Isomeric Ru^{II}Os^{II} Complexes Derived from an Asymmetric Phenanthroline-Terpyridine Bridge

Dinesh Maity, Chanchal Bhaumik, Debiprasad Mondal and Sujoy Baitalik^{*}

Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700032, India

Solvents	Com	Absorption	Luminescence			E^{0-0} /
	poun	$\lambda_{ m max}/$				(eV)
	ds	nm ($\epsilon / M^{-1} cm^{-1}$)				
			λ _{max} / nm	Φ / 10 ⁻³	τ / ns	
CH_2Cl_2	1	461(12920), 428(sh)(10470)	600	497	426	2.31
	2	650(br)(4190), 486(20590), 438(sh)(19700)	707	237	92.06	1.87
	3	501(19750), 406(11080)	647	34.92	1.12, 30.09	2.22
CH ₃ OH	1	459(19290), 424(sh)(14760)	607	432	206	2.31
	2	650(br)(5370), 484(26030), 434(sh)(23900)	717	83.08	41.01	1.86
	3	498(44830)	656	6.80	1.14, 3.00	2.20
(CH3) ₂ CO	1	460(20160), 424(sh)(15730)	611	408	192	2.30
	2	653(br)(4260), 487(20000), 437(sh)(18820)	720	70.79	41.54	1.85
	3	503(51160)	660	8.96	2.60, 4.80	2.17
CH ₃ CN	1	460(17240), 426(sh)(13860)	607	297	151	2.30
	2	650(br)(5600), 486(26000), 435(sh)(24000)	720	83.15	44.31	1.85
	3	500(46420)	658	6.90	1.79, 3.34	2.17
H_2O	1	464(17550), 428(14380)	610	579	542	2.28
	2	665(br)(3230), 487(17870), 436(sh)(17570)	723	32.57	39.20	1.85
	3					
DMSO	1	464(18000), 429(sh)(14630)	620	576	353	2.26
	2	665(br)(2790), 490(13900), 438(sh)(16320)	756	22.01	43.57	1.81
	3	508(63420)	667	21 36	3 11 14 12	2 1 5

Table S1 Photophysical data of 1-3 in different solvents

Solvents	Com	Absorption	Luminescence			E^{0-0} /	ΔG^0 /
	poun	$\lambda_{max}/$	λ_{max} /	Φ / 10 ⁻³	τ / ns	eV	eV
	ds	nm ($\epsilon / M^{-1} cm^{-1}$)	nm				
CH_2Cl_2	4	674(br)(4300), 495(26600),	747	216	168	1.81	-0.50
		465(sh)(25300), 429(sh)(17400)					
	5	665(br)(3200), 496(50200),	710	135	71.84	1.90	-0.32
		440(br)(25000)					
СН.ОН	1	672(br)(8560), 494(52540)	7/3	157	107	1.82	-0.49
CH3OII	-	464(sh)(44750) 422(sh)(33390)	775	157	107	1.02	-0.47
	5	666(3980), 496(74660)	722	73.07	39.20	1.89	-0.28
$(CH3)_2CO$	4	672(br)(6440), 495(35000),	753	154	120	1.80	-0.50
	5	466(sh)(32370), 427(sh)(24580)	725	75 27	10 5 1	1 00	0.20
	5	438(br)(36020)	123	13.37	40.34	1.00	-0.29
		438(01)(30020)					
CH ₃ CN	4	672(br)(8700), 494(45600),	750	164	101	1.81	-0.49
-		460(sh)(37100), 424(sh)(26600)					
	5	658(br)(4180), 494(66560),	722	82.26	42.52	1.88	-0.29
		439(br)(32460)					
ЦО		(71(1-)(500) 401(22(00)	740	04 72	00.70	1.07	0.41
H_2O	4	6/1(0r)(5200), 491(33600), 465(br)(20500)	/49	84./3	89.79	1.8/	-0.41
	5	667(hr)(2100) 495(34600)	724	31.80	31.85	1 87	
	5	437(br)(16400)	124	51.00	51.05	1.07	
DMSO	4	680(br)(7370), 508(43640),	757	195	151	1.79	-0.47
		470(br)(34240), 427(sh)(31950)					
	5	674(br)(3220), 507(53980),	762	21.93	38.16	1.80	-0.35
		440(sh)(29830)					

Table S2 Spectroscopic and relevant photophysical data for intramolecular energytransfer in 4 and 5 in different solvents

Scheme S1. Proton numbering of tpy-PhCH₃, phen-Hbzim-tpy, and bpy.

Fig. S1 ESI-MS (positive) for the complex cations $[(bpy)_2Os(phen-Hbzim-tpy)]^{2+}$ (m/z = 515.59) and $[(bpy)_2Os(phen-bzim-tpy)]^+$ (m/z = 1130.03) in acetonitrile showing the observed and isotopic distribution patterns.

6

Fig. S2 ESI-MS (positive) for the complex $[(tpy-PhCH_3)Ru(tpy-Hbzim-phen)]^{2+}$ (*m*/*z* = 476.37) in acetonitrile.

Fig. S3 ESI-MS (positive) for the complex cations, (a) $[(bpy)_2Ru(phen-bzim-tpy)Os(tpy-PhCH_3)]^{3+}$ (m/z = 484.92) (b) $[(bpy)_2Os(phen-Hbzim-tpy)Ru(tpy-PhCH_3)]^{4+}$ (m/z = 365.65) and $[(bpy)_2Os(phen-bzim-tpy)Ru(tpy-PhCH_3))]^{3+}$ (m/z = 484.52) in acetonitrile showing the observed and isotopic distribution patterns.

7

Fig. S4 ¹H NMR spectra of 1–5 in DMSO- d_6 at room temperature.

Fig. S5 (a) Absorption and (b) photoluminescence spectra of 1 in different solvents.

Fig. S6 (a) Absorption and (b) photoluminescence spectra of 2 in different solvents.

Fig. S7 (a) Absorption and (b) photoluminescence spectra of 4 in different solvents.

Fig. S8 (a) Absorption and (b) photoluminescence spectra of 5 in different solvents.

Fig. S9 Cyclic voltammograms of **1** (a), **2** (b), and **3** (c) in acetonitrile at room temperature showing the oxidation of the complexes.

Fig. S10 Square wave voltammograms of **1** (a), **2** (b), **3** (c), **4** (d), and **5**(e) in acetonitrile at room temperature showing the reduction of the complexes.

Fig. S11 Time–resolved photoluminescence decays of **1** in different solvents at room temperature. Lifetimes of the complex in different solvents are also given in the figure.

Fig. S12 Time–resolved photoluminescence decays of **2** in different solvents at room temperature. Lifetimes of the complex in different solvents are also given in the figure.

Fig. S13 Time–resolved photoluminescence decays of **3** in different solvents at room temperature. Lifetimes of the complex in different solvents are also given in the figure.

Fig. S14 Time–resolved photoluminescence decays of **4** in different solvents at room temperature. Lifetimes of the complex in different solvents are also given in the figure.

Fig. S15 Time–resolved photoluminescence decays of **5** in different solvents at room temperature. Lifetimes of the complex in different solvents are also given in the figure.

Fig. S16 Changes in UV–vis absorption and luminescence spectra of **5** in acetonitrile solution $(2.0 \times 10^{-5} \text{ M})$ upon incremental addition of CN⁻ (a and c, respectively) and F⁻ (b and d, respectively) ions $(5.0 \times 10^{-3} \text{ M})$. The insets show the fit of the experimental absorbance (a and b) and luminescence (c and d) data to a 1:1 binding profile.

Fig. S17 Changes in UV–vis absorption and luminescence spectra of 4 in acetonitrile solution $(2.0 \times 10^{-5} \text{ M})$ upon incremental addition of AcO⁻ ion $(5.0 \times 10^{-3} \text{ M})$. The insets show the fit of the experimental absorbance and luminescence data to a 1:1 binding profile.

Fig. S18 Changes in UV–vis absorption and luminescence spectra of 5 in acetonitrile solution $(2.0 \times 10^{-5} \text{ M})$ upon incremental addition of AcO⁻ ion $(5.0 \times 10^{-3} \text{ M})$. The insets show the fit of the experimental absorbance and luminescence data to a 1:1 binding profile.

Fig. S19 Changes in UV–vis absorption and luminescence spectra of **4** in acetonitrile solution $(2.0 \times 10^{-5} \text{ M})$ upon incremental addition of OH⁻ ion $(5.0 \times 10^{-3} \text{ M})$. The insets show the change of absorbance and luminescence with equivalent of OH⁻ ion.

Fig. S20 Changes in UV–vis absorption and luminescence spectra of **5** in acetonitrile solution $(2.0 \times 10^{-5} \text{ M})$ upon incremental addition of OH⁻ ion $(5.0 \times 10^{-3} \text{ M})$. The insets show the change of absorbance and luminescence with equivalent of OH⁻ ion.

Fig. S21 Changes in UV–vis absorption (a) and luminescence (b) spectra of **phen-Hbzim-tpy** in dimethylsulfoxide solution $(2.0 \times 10^{-5} \text{ M})$ upon incremental addition of AcO⁻ ion. The insets show the fit of the experimental absorbance and luminescence data to a 1:1 binding profile.

Fig. S22 Changes in UV–vis absorption (a) and luminescence (b) spectra of **phen-Hbzim-tpy** in dimethylsulfoxide solution $(2.0 \times 10^{-5} \text{ M})$ upon incremental addition of H₂PO₄⁻ ion. The insets show the fit of the experimental absorbance and luminescence data to a 1:1 binding profile.

Fig. S23 Changes in UV–vis absorption and luminescence spectra of **phen-Hbzim-tpy** in acetonitrile solution $(2.0 \times 10^{-5} \text{ M})$ upon incremental addition of OH⁻ ion. The insets show the change of absorbance and luminescence with equivalent of OH⁻ ion.

Fig. S24 Change in time-resolved luminescence decay of **4** in acetonitrile $(2.0 \times 10-5 \text{ M})$ at room temperature upon incremental addition of F⁻ ion $(5.0 \times 10-3 \text{ M})$. Insets show the lifetimes of the complex.

Fig. S25 Change in time-resolved luminescence decay of **5** in acetonitrile solution ($2.0 \times 10-5$ M) at room temperature upon incremental addition of F– ion ($5.0 \times 10-3$ M). Insets show the lifetimes of the complex.

Fig. S26 ¹H NMR titration of sensor **4** in DMSO- d_6 solution (5.0 × 10⁻³ M) upon addition of F⁻ ion (1.25 × 10⁻¹ M, 0–1 equivalents).

Fig. S27 Changes in UV–vis absorption (a) and luminescence (b) spectra of **phen-Hbzim-tpy** with variation of pH in dimethylsulfoxide-water (3:2 v/v). The insets show the changes of absorbance and luminescence intensities with the variation of pH.

Fig. S28 Change of the luminescence lifetimes of **4** with variation of pH in acetonitrilewater (3:2 v/v). Inset shows the decay profiles of **4** as a function of pH. Excited state pK^* is also given in figure.

Fig. S29 Change of the luminescence lifetimes of **5** with variation of pH in acetonitrilewater (3:2). Inset shows the decay profiles of **5** as a function of pH. Excited state pK^* is also given in figure.

Fig. S30 Change of the luminescence lifetimes of **phen-Hbzim-tpy** with variation of pH in dimethylsulfoxide -water (3:2). Inset shows the decay profiles of **phen-Hbzim-tpy** as a function of pH. Excited state pK^* is also given in figure.