Supplementary Information for

Complexation of Cm(III) and Eu(III) with CyMe₄-BTPhen and CyMe₄-BTBP studied by Time Resolved Laser Fluorescence Spectroscopy

Antje Bremer,^{**a,b*} Daniel M. Whittaker,^{*c*} Clint A. Sharrad,^{*c,d,e*} Andreas Geist^{*a*} and Petra J. Panak^{*a,b*}

^{*a}</sup> Karlsruher Institut für Technologie, Institut für Nukleare Entsorgung, P. O. Box 3640,76021 Karlsruhe, Germany.*</sup>

^b Ruprecht-Karls-Universität Heidelberg, Institut für Physikalische Chemie, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany.

^c Centre of Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.

^d School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.

^e Research Centre for Radwaste and Decommissioning, Dalton Nuclear Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.

Table of Contents

Emission spectra of the (M(solv.)) and (ML ₂) complexes
Cm(III) – CyMe ₄ -BTPhen
Cm(III) – CyMe ₄ -BTBP
Eu(III) – CyMe₄-BTPhen
Eu(III) – CyMe₄-BTBP5
Overview Cm(III) batch experiments
Batch experiment Cm(III) – CyMe ₄ -BTBP
Emission spectra7
Speciation diagram7
Overview Eu(III) batch experiments
Batch experiment Eu(III) – CyMe ₄ -BTPhen – slope analysis
Batch experiments Eu(III) – CyMe ₄ -BTBP 10
Emission spectra10
Speciation diagram11
Slope analysis
Comparison of mono- and biphasic experiments with CyMe ₄ -BTBP13
Cm(III)
Eu(III)

Emission spectra of the (M(solv.)) and (ML₂) complexes

Fig. S1 Normalized fluorescence spectra of the solvated Cm(III) ion and the Cm(III)-CyMe₄-BTPhen 1:2 complex in methanol (3.3 mol% water, $c(HClO_4) = 91.2$ mM).

Fig. S2 Normalized fluorescence spectra of the solvated Cm(III) ion and the Cm(III)-CyMe₄-BTBP 1:2 complex in methanol (3.3 mol% water, c(HClO₄) = 91.2 mM).

Eu(III) – CyMe₄-BTPhen

Fig. S3 Normalized fluorescence spectra resulting from the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of the solvated Eu(III) ion and the Eu(III)-CyMe₄-BTPhen 1:2 complex in methanol (3.3 mol% water, c(HClO₄) = 91.2 mM).

Fig. S4 Normalized fluorescence spectra resulting from the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition of the solvated Eu(III) ion and the Eu(III)-CyMe₄-BTPhen 1:2 complex in methanol (3.3 mol% water, $c(HClO_{4}) = 91.2 \text{ mM}).$

Fig. S5 Normalized fluorescence spectra resulting from the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of the solvated Eu(III) ion and the Eu(III)-CyMe₄-BTBP 1:2 complex in methanol (3.3 mol% water, c(HClO₄) = 91.2 mM).

Fig. S6 Normalized fluorescence spectra resulting from the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition of the solvated Eu(III) ion and the Eu(III)-CyMe₄-BTBP 1:2 complex in methanol (3.3 mol% water, c(HClO₄) = 91.2 mM).

Overview Cm(III) batch experiments

experiment name	$\log \beta_2$	average
Cm-BTPhen 1 Cm-BTPhen 2	13.6 13.9	13.8
Cm-BTBP 1 Cm-BTBP 2	12.4 12.4	12.4

Table S1 Overview of Cm(III) batch experiments performed with CyMe₄-BTPhen and CyMe₄-BTBP.

Batch experiment Cm(III) - CyMe₄-BTBP

Fig. S7 Fluorescence spectra of Cm(III) in methanol (with 3.3 mol% water) upon increasing CyMe₄-BTBP concentration (c(Cm(III))_{ini} = $5 \cdot 10^{-8}$ M, c(CyMe₄-BTBP) = $9.90 \cdot 10^{-8}$ M - $8.26 \cdot 10^{-6}$ M, c(H⁺) = 91.2 mM).

Fig. S8 Relative concentrations of (Cm(solv.)) and the Cm(III)-CyMe₄-BTBP 1:2 complex as a function of the free CyMe₄-BTBP concentration in methanol (with 3.3 mol% water). Symbols represent experimental data, lines designate calculations.

Speciation diagram

Overview Eu(III) batch experiments

experiment name	emission band(s)	$\log \beta_2$	average
Eu-BTPhen 1	${}^{7}F_{1} \text{ and } {}^{7}F_{2}$	11.9 12.0	
Eu-BTPhen 2	$^{7}F_{1}$ and $^{7}F_{2}$ $^{7}F_{0}$	11.2 11.3	11.6
Eu-BTBP 1	${}^{7}F_{1} \text{ and } {}^{7}F_{2}$	11.6 11.6	
Eu-BTBP 2	$^{7}F_{1}$ and $^{7}F_{2}$	11.0 11.0	11.3
Eu-BTBP 3	${}^{7}F_{1} \text{ and } {}^{7}F_{2}$	11.3 11.3	

Table S2 Overview of Eu(III) batch experiments performed with CyMe₄-BTPhen and CyMe₄-BTBP.

Batch experiment Eu(III) - CyMe₄-BTPhen - slope analysis

Fig. S9 Double logarithmic plot of $c((Eu(CyMe_4-BTPhen)_2))/c((Eu(solv.))$ concentration ratio vs free ligand concentration resulting from the analysis of the ${}^5D_0 \rightarrow {}^7F_1$ and ${}^5D_0 \rightarrow {}^7F_2$ emission bands (top) or ${}^5D_0 \rightarrow {}^7F_0$ emission band (bottom).

Batch experiments Eu(III) - CyMe₄-BTBP

Fig. S10 Fluorescence spectra resulting from the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions (top) or ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition (bottom) of Eu(III) in methanol (with 3.3 mol% water) upon increasing CyMe₄-BTBP concentration (c(Eu(III))_{ini} = 5 \cdot 10⁻⁸ M, c(CyMe₄-BTBP) = 3.85 \cdot 10⁻⁶ M - 6.98 \cdot 10⁻⁵ M, c(H⁺) = 91.2 mM).

Speciation diagram

Fig. S11 Relative concentrations of (Eu(solv.)) and the Eu(III)-CyMe₄-BTBP 1:2 complex as a function of the free CyMe₄-BTBP concentration in methanol (with 3.3 mol% water). Symbols represent experimental data resulting from the analysis of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission bands, lines designate calculations.

Slope analysis

Fig. S12 Double logarithmic plot of $c((Eu(CyMe_4-BTBP)_2))/c((Eu(solv.))$ concentration ratio vs free ligand concentration resulting from the analysis of the ${}^5D_0 \rightarrow {}^7F_1$ and ${}^5D_0 \rightarrow {}^7F_2$ emission bands (top) or ${}^5D_0 \rightarrow {}^7F_0$ emission band (bottom).

Comparison of mono- and biphasic experiments with CyMe₄-BTBP

Fig. S13 Normalized fluorescence spectra of Cm(III) in the organic phase of an extraction experiment with CyMe₄-BTBP and of the Cm(III)-CyMe₄-BTBP 1:2 complex in methanol (with 3.3 mol% water).

Fig. S14 Normalized fluorescence spectra of Cm(III)-CyMe₄-BTBP species upon increasing nitrate concentration in methanol (3.3 mol% water, $c(Cm(III))_{ini} = 4.59 \cdot 10^{-8} \text{ M}, c(CyMe_4-BTBP)_{ini} = 8.26 \cdot 10^{-6} \text{ M}).$

Fig. S15 Normalized fluorescence spectra resulting from the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of Eu(III) in the organic phase of an extraction experiment with CyMe₄-BTBP and of the Eu(III)-CyMe₄-BTBP 1:2 complex in methanol (with 3.3 mol% water) (top). Normalized fluorescence spectra resulting from the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of Eu(III)-CyMe₄-BTBP species upon increasing nitrate concentration in methanol (with 3.3 mol% water, c(Eu(III))_{ini} = 6.49 \cdot 10^{-6} M, c(CyMe_4-BTBP)_{ini} = 4.76 \cdot 10^{-5} M) (bottom).

Fig. S16 Normalized fluorescence spectra resulting from the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition of Eu(III) in the organic phase of an extraction experiment with CyMe₄-BTBP and of the Eu(III)-CyMe₄-BTBP 1:2 complex in methanol (with 3.3 mol% water) (top). Normalized fluorescence spectra resulting from the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition of Eu(III)-CyMe₄-BTBP species upon increasing nitrate concentration in methanol (with 3.3 mol% water, $c(Eu(III))_{ini} = 6.49 \cdot 10^{-6} \text{ M}, c(CyMe_{4}-BTBP)_{ini} = 4.76 \cdot 10^{-5} \text{ M})$ (bottom).