Cyclometalated Heteronuclear Pt/Ag and Pt/Tl Complexes: A Structural and Photophysical Study

Sirous Jamali, *^a Reza Ghazfar,^a Elena Lalinde,^b Zahra Jamshidi,^c Hamidreza Samouie,^d Hamid R. Shahsavari,^b M. Teresa Moreno,^b Eduardo Escudero-Adán,^d J. Benet-Buchholz^d

^aChemistry Department, Sharif University of Technology, Tehran, P.O. Box 11155-3516, Iran; ^bDepartamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain; ^cChemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; ^dInstitute of Chemical Research of Catalonia (ICIQ), Avgda. PaïsosCatalans 16, 43007 Tarragona, Spain

Р	age
Figure S1. 2D 1 H- 1 H NOESY NMR spectrum of 3 in CD ₂ Cl ₂	2
Figure S2. 2D 1 H- 1 H NOESY NMR spectrum of 4 in CD ₂ Cl ₂	2
Figure S3. ¹ H NMR spectra (aromatic region) and atomic numbering	
scheme of 1, 3 and 4	3
Figure S4 . 2D 1 H- 1 H COSY-DQF NMR spectrum of 3 in CD ₂ Cl ₂ (aromatic region)	4
Figure S5. 2D ¹ H- ¹ H COSY-DQF NMR of 1 in CD ₂ Cl ₂ (aromatic region)	4
Figure S6.Crystal structure of 3 that shows H2a directed toward	
the face of the pyridyl ring of dppy ligands	5
Figure S7 . 2D 1 H- 1 H COSY-LR NMR spectrum of 3 in CD ₂ Cl ₂ (aromatic region)	5
Figure S8 . 2D ¹ H- ¹ H COSY-LR NMR spectrum of 4 in CD ₂ Cl ₂ (aromatic region)	6
Figure S9 . 2D 1 H- 1 H COSY-DQF spectrum of 4 in CD ₂ Cl ₂ (aromatic region)	6
Figure S10. ESI-Mass spectrum (positive ion mode) of 3	7
Figure S11. Extended network of 3 showing the Tl […] F interactions	7
Figure S12. Optimized structure of trinuclear Pt-Tl-Tl complex 4 showing positions	
of the H1c and H2c protons in the ring current of bhq ligands	8
Figure S13 . Left: ¹ H NMR spectrum of single crystals of 2 in CDCl ₃	
shows removing acetone molecule. Right: $VT^{-1}H$ NMR spectrum of 2 in CDCl ₃ .	8
Figure S14 . 2D 1 H- 1 H NMR phase-sensitive NOESY/EXSY spectrum of 2 in CD ₂ Cl ₂	9
Figure S15. Extended molecular structure of 2. The BF ₄ counter-ions are omitted for clarity	9
Figure S16. (2a) Optimized structure of complex 2 and (2b) Structure based on cif	
crystallographic data	9
Figure S17. Normalized diffuse reflectance UV-vis spectra of 1-4 in the solid state	10
Table S1. Calculated Energy and Compositions of the Electronic Transitions	
of Complex $[Pt_2Me_2(bhq)_2(\mu-dppy)_2Ag_2](BF_4)_2$ (2)	10
Table S2. Calculated Energy and Compositions of the Electronic Transitions	
of Complex [PtMe (bhq)(dppy)Tl]PF ₆ (3)	11
Table S3. Crystal data and structure refinement parameters for complex 3	12
Table S4. Crystal data and structure refinement parameters for complex 1	13
Figure S18. Selected HOMOs and LUMOs orbital plot for 2 and 3.	14
Table S5. Composition (%) of frontier MOs in the ground state for complex 2.	15

Table S6. Composition (%) of Frontier MOs in the ground state for complex 3.**Table S7.** TD-DFT Calculated energy levels and experimental absorption spectraparameters of 2 and 3.

15

15

Figure S1. 2D ¹H-¹H NOESY NMR spectrum of **3** in CD₂Cl₂

Figure S2. 2D¹H-¹H NOESY NMR spectrum of 4 in CD₂Cl₂

Figure S3. ¹H NMR spectra (aromatic region) and atomic numbering scheme of 1, 3 and 4

Four distinct sets of correlations observed in the COSY-DQF spectra of 1, 3 (Figures S4 and S5). The first set delineating the sequence from the protons of the CH groups adjacent to the N atoms of the bhq ligands, H1a protons (δ_1 = 8.25 and δ_3 = 8.38 ppm) and extending through the H2a protons (δ_1 =6.9 and δ_3 =7.1 ppm) and the H3a protons (δ_1 = 8 and δ_3 =7.8 ppm). Remarkably, H2a protons, directed toward the face of the phenyl ring of dppy ligands, are shielded by the ring-current effect of the phenyl rings (Figure S6 in SI). A second set of correlations defined the sequence from the CH groups adjacent to the N atoms of the dppy ligands, H1b protons (δ_1 = 8.85 and δ_3 =8.69 ppm) through to the H2b protons (δ_1 = 7.36 and δ_3 =7.61 ppm) and extending through the H3b protons (δ_1 = 7.7 and δ_3 =8 ppm) and terminating at the H4b protons (δ_1 = 8.35 and $\delta_3=8$ ppm). A third comparable set of correlations established the sequence from the CH groups adjacent to the C atoms of the bhq ligands, H1c protons (δ_1 and δ_3 = 8.15 ppm) through the H2c protons (δ_1 =7.74 and δ_3 =7.81 ppm) to the H3c protons (δ_1 =7.74 and δ_3 =7.81 ppm). An additional set of correlations were detected between H1d protons (δ_1 =7.87 and δ_3 =7.95 ppm) and H2d protons(δ_1 =7.62 and δ_3 =7.73 ppm). Furthermore, the COSY-LR NMR spectra of 1 and 3 (Figure S7) reveal long range correlation of H1d and H2d protons with (H1c, H2c,H3c) and (H1a, H2a, H3a) proton sets respectively. Chemical shifts for phenyl protons of the PPh₂ groups are clustered at 7.5 and 8 ppm. The trinuclear complex 4 showed similar ¹H NMR, COSY-DQF and COSY-LR (Figure S8 and S9) pattern with complexes 1 and 3. However, two protons set (H1c-3c) and (H1b-4b) showed a large upfield shift in the ¹H NMR spectrum of 4 in comparison with those observed in the ¹H NMR spectra of 1 and 3. The up-field shifts of the (H1b-4b) and (Hc1-3c) protons in 4 have been ascribed to the shielding from the ring current of the bhq ligand of the second [PtMe(bhq)(dppy)] and the phenyl rings of PPh₂ units. The upfield movement of aromatic signals and specially resonances of the H1b-H4b protons supports the formation of trinuclear complex 4 with the same conformation as that predicted by DFT calculations and shown in Figure S16.

Figure S4. 2D ¹H-¹H COSY-DQF NMR spectrum of **3** in CD₂Cl₂(aromatic region)

Figure S6. Crystal structure of 3 that shows H2a directed toward the face of the pyridyl ring of dppy ligands

Figure S7. 2D ¹H-¹H COSY-LR NMR spectrum of **3** in CD₂Cl₂ (aromatic region)

Figure S8. 2D ¹H-¹H COSY-LR NMR spectrum of 4 in CD₂Cl₂ (aromatic region)

Figure S10. ESI-Mass spectrum (positive ion mode) of 3

Figure S11. Extended network of 3 showing the Tl^{...}F interactions (3.236 Å)

Figure S12. Optimized structure of trinuclear Pt-Tl-Tl complex 4 showing positions of the H1c and H2c protons in the ring current of bhq ligands

Figure S13. Left: ¹H NMR spectrum of single crystals of **2** in CDCl₃ shows removing acetone molecule Right: VT-¹H NMR spectrum of **2** in CDCl₃.

Figure S15. Extended molecular structure of 2. The BF₄ counter-ions are omitted for clarity

crystallographic data

Figure S17. Normalized diffuse reflectance UV-vis spectra of 1-4 in the solid state

Table S1. Calculated Energy and Compositions of the Electronic Transitions of Complex $[Pt_2Me_2(bhq)_2(\mu-dppy)_2Ag_2](BF_4)_2$ (2)

state	Composition	λ (calc.)/nm	f
S ₁	HOMO-1→LUMO (95%)	514	0.0018
S ₂	HOMO→LUMO (60%), HOMO-1→LUMO(34%)	449	0.0244
S ₃	HOMO-2→LUMO (98%)	412	0.0444
S ₄	HOMO-3→LUMO (3%), HOMO-1→LUMO+1 (84%), HOMO-1→LUMO+2 (8%)	402	0.0012
S ₅	HOMO-4→LUMO+1 (12%), HOMO-3→LUMO (81%), HOMO-1→LUMO+1 (3%)	399	0.0078
S ₆	HOMO→LUMO+1 (99%)	385	0.0018
\$ ₇	HOMO-6→LUMO (4%), HOMO-4→LUMO (77%), HOMO-3→LUMO (14%)	368	0.0347
S ₈	HOMO-7→LUMO (3%), HOMO-5→LUMO (93%)	363	0.0196
T ₁	HOMO-1→LUMO (70%), HOMO→LUMO (26%)	549	0.0000
T ₂	HOMO→LUMO (98%)	458	0.0000
T ₃	HOMO-2→LUMO (81%), HOMO-1→LUMO+1 (9%)	421	0.0000
T ₄	HOMO-3→LUMO (3%), HOMO-2→LUMO (15%), HOMO-1→LUMO+1 (62%), HOMO-1→LUMO+2 (11%)	415	0.0000
T ₅	HOMO-4→LUMO (18%), HOMO-3→LUMO (68%), HOMO-1→LUMO+1 (6%)	407	0.0000

T ₆	HOMO-7→LUMO (6%), HOMO-4→LUMO (6%),	389	0.0000
	HOMO-3→LUMO (4%), HOMO→LUMO+1 (72%)		
T_7	HOMO-9→LUMO (5%), HOMO-8→LUMO (6%),	387	0.0000
	HOMO-7→LUMO (18%), HOMO-5→LUMO (7%),		
	HOMO-4→LUMO (17%), HOMO-3→LUMO (15%),		
	HOMO→LUMO+1 (24%)		
T ₈	HOMO-9→LUMO (3%), HOMO-7→LUMO (7%),	374	0.0000
0	HOMO-5→LUMO (46%), HOMO-4→LUMO (37%),		
	HOMO-3→LUMO+7 (5%)		

Table S2.	. Calculated Energy and	Compositions of the	Electronic Transi	tions of Complex [PtMe
(bhq)(dpp	$(y)Tl]PF_6(3)$				

state	composition	λ (calc.)/nm	f
S ₁	HOMO→LUMO (65%), HOMO→LUMO+1 (31%)	398	0.0374
S ₂	HOMO→LUMO (29%), HOMO→LUMO+1 (64%),	388	0.0077
- 2	HOMO→LUMO+2 (6%)		
S ₃	HOMO→LUMO (5%), HOMO→LUMO+1 (91%)	357	0.0022
S ₄	HOMO-1→LUMO (35%), HOMO-1→LUMO+1 (40%),	345	0.0033
	HOMO→LUMO+3 (17%), HOMO→LUMO+4 (4%)		
S ₅	HOMO-1→LUMO (56%), HOMO-1→LUMO+1 (27%),	331	0.0056
	HOMO-1→LUMO+2 (4%), HOMO→LUMO+3 (8%)		
S ₆	HOMO-3→LUMO (4%), HOMO-2→LUMO (77%),	326	0.0095
	HOMO-2→LUMO+1 (6%), HOMO-2→LUMO+2 (7%)		
S ₇	HOMO-5→LUMO+1 (2%), HOMO-2→LUMO+1 (4%),	323	0.0822
	HOMO-1→LUMO+1 (21%), HOMO→LUMO+3 (59%),		
	$HOMO \rightarrow LOMO+5 (3\%)$	210	0.0007
S ₈	HOMO \rightarrow LOMO+3 (4%), HOMO \rightarrow LOMO+4 (90%)	319	0.0097
T ₁	HOMO \rightarrow LUMO+3 (36%), HOMO-1 \rightarrow LUMO+1 (28%),	467	0.0000
	HOMO→LUMO+4 (10%), HOMO→LUMO+6 (5%),		
-	HOMO \rightarrow LUMO+5 (4%), HOMO-1 \rightarrow LUMO (4%)	450	0.0000
₂	HOMO→LUMO (25%), HOMO→LUMO+1 (65%)	456	0.0000
T ₃	HOMO→LUMO (48%), HOMO→LUMO+1 (18%),	394	0.0000
	HOMO-1→LUMO+1 (15%), HOMO→LUMO+2 (6%),		
	HOMO→LUMO+3 (4%), HOMO-1→LUMO (3%)		
T ₄	HOMO-1 \rightarrow LUMO (11%), HOMO-1 \rightarrow LUMO+1 (29%),	388	0.0000
	$HOMO \rightarrow LUMO (16\%), HOMO \rightarrow LUMO + 1 (7\%),$		
		270	0.0000
I 5	$HOMO-2 \rightarrow LOMO+1 (91%), HOMO-2 \rightarrow LOMO (28%), HOMO-3 \rightarrow LOMO (9%)$	370	0.0000
	$HOMO-2 \rightarrow UIMO+3 (7\%)$ $HOMO-2 \rightarrow UIMO+4 (3\%)$		
	HOMO-3→LUMO+3 (3%)		
Tc	HOMO-2→LUMO (3%), HOMO→LUMO (9%),	361	0.0000
• 6	HOMO→LUMO+2 (80%)	501	0.0000
Τ ₇	HOMO-2→LUMO+1 (24%), HOMO-2→LUMO+2 (21%),	347	0.0000
,	HOMO-2→LUMO (20%), HOMO-3→LUMO (7%),		
	HOMO-3→LUMO+2 (7%), HOMO→LUMO+2 (7%),		
	HOMO-3→LUMO+1 (7%)		
T ₈	HOMO-3→LUMO+8 (20%), HOMO-4→LUMO+10 (10%),	342	0.0000
	HOMO-4→LUMO+9 (8%), HOMO-2→LUMO+8 (7%),		
	HOMO-8 \rightarrow LUMO+7 (4%), HOMO-10 \rightarrow LUMO+8 (4%),		
	HOMO- $/\rightarrow$ LUMO+10 (3%), HOMO-8 \rightarrow LUMO+5 (3%),		
	HOMO-4 \rightarrow LUMO+1 (3%), HOMO-3 \rightarrow LUMO (3%),		
	HUIVIU-3→LUIVIU+2 (3%)		

Empirical formula	C ₃₁ H ₂₅ N ₂ PPtTl.PF ₆ .H ₂ O
Formula mass	1018.95
Crystal size (mm)	$0.25 imes \underline{0.20} imes \underline{0.04}$
Colour	yellow-orange
Crystal system	triclinic
Space group	P-1
θ_{max} (°)	30.0
<i>a</i> (Å)	9.1552(3)
<i>b</i> (Å)	13.2850(5)
<i>c</i> (Å)	14.9645(6)
α (°)	109.037(3)
β (°)	101.241(3)
γ (°)	108.052(3)
$V(\text{\AA}^3)$	1544.58(12)
Ζ	2
$D_{\text{calc}} (\text{Mg/m}^3)$	2.191
$\mu (\mathrm{mm}^{-1})$	9.902
<i>F</i> (000)	956
Index ranges	$-12 \le h \le 12$
	$-18 \le k \le 18$
	$-21 \le l \le 21$
No. of measured	18299
reflections	8881/0.029
No. of independent	
reflections/R _{int}	7029
No. of observed	399
reflections with $I > 2\sigma(I)$	0.95
No. of parameters	0.0296
Goodness-of-fit (GOF)	0.0727
R_1 (observed data)	

 Table S3. Crystal Data and Structure Refinement Parameters for Complex 3

 $\frac{wR_2 \text{ (all data)}^a}{w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 32.1161P] \text{ for } \mathbf{3} \text{ in which } P = (F_o^2 + 2F_c^2)/3$

Table S4. Crystal data and structure refinement for complex 1

npirical formula C31 H25 N2 P Pt				
Formula weight	651.59			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/n			
Unit cell dimensions	a = 24.1753(9) Å	α= 90.00 °.		
	b = 9.7937(4) Å	$\beta = 90.584(2)$ °.		
	c = 31.2016(12) Å	$\gamma = 90.00$ °.		
Volume	7387.1(5) Å ³			
Z	12			
Density (calculated)	1.758 Mg/m ³			
Absorption coefficient	5.787 mm ⁻¹	mm ⁻¹		
F(000)	3816			
Crystal size	0.12 x 0.04 x 0.03 mm ³			
Theta range for data collection	1.06 to 29.77 °.			
Index ranges	-32 <=h<=33 ,-12 <=k<=13 ,-4	1 <=1<=43		
Reflections collected	59916			
Independent reflections	19140 [R(int) = 0.0370]			
Completeness to theta =29.77 $^{\circ}$	90.7%			
Absorption correction	Empirical			
Max. and min. transmission 0.8455 and 0.5435				
Refinement method Full-matrix least-squares on F ²				
Data / restraints / parameters 19140 / 546 / 1111				
Goodness-of-fit on F^2 1.135				
Final R indices [I>2sigma(I)]	R1 = 0.0585, $wR2 = 0.1253$			
R indices (all data)	R1 = 0.0827, $wR2 = 0.1347$			

Figure S18. Selected HOMOs and LUMOs orbital plot for 2 and 3.

 Table S5. Composition (%) of frontier MOs in the ground state for complex 2.

MO	Pt(1)	Pt(2)	Ag(1)	Ag(2)	dppy(1)	dppy(2)	bhq(1)	bhq(2)
LUMO+5	4	4	4	3	41	38	3	3
LUMO+4	8	8	3	3	9	9	29	29
LUMO+3	3	3	2	2	31	31	14	14
LUMO+2	3	3	3	3	39	39	5	5
LUMO+1	4	4	5	5	16	15	25	26
LUMO	4	4	6	6	6	5	36	35
HOMO	12	12	19	19	10	10	8	8
HOMO-1	19	19	9	9	8	8	14	14
HOMO-2	17	17	3	3	6	6	24	24
HOMO-3	33	33	8	8	1	1	6	6
HOMO-4	22	22	8	8	3	3	16	16
HOMO-5	29	29	1	1	2	2	15	14

 Table S6. Composition (%) of Frontier MOs in the ground state for complex 3.

MO	Pt(1)	Pt(2)	Ag(1)	Ag(2)	dppy(1)	dppy(2)	bhq(1)	bhq(2)
LUMO+5	4	4	4	3	41	38	3	3
LUMO+4	8	8	3	3	9	9	29	29
LUMO+3	3	3	2	2	31	31	14	14
LUMO+2	3	3	3	3	39	39	5	5
LUMO+1	4	4	5	5	16	15	25	26
LUMO	4	4	6	6	6	5	36	35
HOMO	12	12	19	19	10	10	8	8
HOMO-1	19	19	9	9	8	8	14	14
HOMO-2	17	17	3	3	6	6	24	24
HOMO-3	33	33	8	8	1	1	6	6
HOMO-4	22	22	8	8	3	3	16	16
HOMO-5	29	29	1	1	2	2	15	14

 Table S7. TD-DFT Calculated energy levels and experimental absorption spectra parameters of 2 and 3.

			Experimental (CH ₂ Cl ₂)			
Complex	state	$\lambda_{\text{max}}[nm]$	1	Assignments	nature	$\lambda_{max}[nm]$
2	S ₁	514	0.0018	HOMO-1-> LUMO (95%)		
	S_2	449	0.0244	HOMO-> LUMO (60%) HOMO-1->LUMO (34%)	¹ MM'LCT/ ¹ L'LCT	413
	T ₁	549	0.0000	HOMO-1-> LUMO (70%) HOMO-> LUMO (26%)		
3	S_1	398	0.0374	HOMO-> LUMO (65%) HOMO-> LUMO+1 (31%)	¹ LL'CT/ ¹ LM'CT	404
	S_2	388	0.0077	HOMO->LUMO (29%) HOMO ->LUMO+1 (64%)	¹ LL'CT/ ¹ LM'CT	378
	T ₁	467	0.0000	HOMO-> LUMO+3 (38%) HOMO-1> LUMO+1 (28%)		