Electronic Supplementary Information

for the manuscript entitled

Chiroptical properties, binding affinity, and photostability of conjugated zinc porphyrin dimer complexed with left-handed Z-DNA and right-handed B-DNA

Jung Kyu Choi, Aisha Reed and Milan Balaz*

University of Wyoming, Department of Chemistry 1000 E. University Avenue, Laramie, WY 82071, USA www.uwyo.edu/milanbalaz

Figure S1: (a) Absorption ($\lambda = 469 \text{ nm}$) and (b) emission ($\lambda_{ex} = 469 \text{ nm}$, $\lambda_{em} = 775 \text{ nm}$, slit = 10 nm) HPLC chromatograms of **ZnPD**.

	•		
time/min	$1\% CH_3CO_2H$ in H_2O	CH_3OH	THF
0	70%	25%	5%
8.0	15%	25%	60%
10.0	15%	25%	60%
11.0	70%	25%	5%
13.0	70%	25%	5%

Table S1: Solvent gradient used for HPLC of **ZnPD**.[†]

[†]Flow rate: 1 mL/min (analytical) or 4 mL/min (semi-preparative), temperature: 30 °C.

Figure S2: MALDI-TOF spectra of **ZnPD**. m/z 1974.350 ($C_{112}H_{106}N_{10}O_{16}Zn_2$, [M-2I]⁺, requires 1974.636).

Binding constants of **ZnPD** with DNAs were determined by absorption spectrophotometric titration at 20 °C as previously reported.[1-5] The fixed amount of **ZnPD** ($c = 2.24 \mu M$) in Nacacodylate buffer (1 mM, pH = 7.0) was titrated with the stock solution of DNA ($c = 1.80 \mu M$). The changes in absorbance of the Soret band of **ZnPD** were monitored upon addition of DNA. The apparent binding constant (K_{app}) was calculated by the following equation:

$$\frac{[DNA]_{\text{total}}}{/e_{\text{app}} - e_{\text{f}}/} = \frac{1}{/e_{\text{b}} - e_{\text{f}}/} [DNA]_{\text{total}} + \frac{1}{K_{\text{app}}}/e_{\text{b}} - e_{\text{f}}/$$

where e_{app} corresponds to absorbance of a given solution divided by the total ligand concentration; e_f corresponds to molar absorptivity of the free ligand; e_b corresponds to molar

absorptivity of the total bound ligand. In the plot of $[DNA]/(e_{app} - e_f)$ vs. [DNA], K_{app} is given by the ratio of the slope to the intercept.

Figure S3: Scatchard plot of **ZnPD** binding with B-form of poly(dG-dC)₂. $K_{app} = 4.84 \times 10^6 \text{ M} \pm 0.23$.

Figure S4: Scatchard plot of **ZnPD** binding with spermine-Z-poly(dG-dC)₂. $K_{app} = 6.18 \times 10^6$ M ± 0.08 .

Figure S5: UV-vis absorption spectra of **ZnPD** during irradiation. Conditions: [**ZnPD**] = 5 μ M, 1% DMSO Na-cacodylate buffer (1 mM, pH = 7.0, 50 mM NaCl)

Figure S6: UV-vis absorption spectra of **ZnPD** during irradiation in the presence of B-form of poly(dG-dC)₂. Conditions: [**ZnPD**] = 5 μ M, [poly(dG-dC)₂] = 50 μ M, 1% DMSO Na-cacodylate buffer (1 mM, pH = 7.0, 50 mM NaCl).

Figure S7: UV-vis absorption spectra of **ZnPD** during irradiation in the presence of Z-form of poly(dG-dC)₂ induced by spermine (12 μ M). Conditions: [**ZnPD**] = 5 μ M, [poly(dG-dC)₂] = 50 μ M, 1% DMSO Na-cacodylate buffer (1 mM, pH = 7.0, 50 mM NaCl).

Figure S8: UV-vis absorption spectra of **ZnPD** during irradiation in the presence of Z-form of poly(dG-dC)₂ induced by Co(III) (12 μ M). Conditions: [**ZnPD**] = 5 μ M, [poly(dG-dC)₂] = 50 μ M, 1% DMSO Na-cacodylate buffer (1 mM, pH = 7.0, 50 mM NaCl).

References:

- [1] J.D. McGhee, P.H.V. Hippel, J. Mol. Biol. 1974, 86, 469-489.
- [2] T. Yamamoto, D.H. Tjahjono, N. Yoshioka, H. Inoue, Bull. Chem. Soc. Jpn. 2003, 76, 1947–1955.
- [3] R.F. Pasternack, E.J. Gibbs, J.J. Villafranca, Biochemistry 1983, 22, 2406–2414.
- [4] T. Ohyama, H. Mita, Y. Yamamoto, Biophys. Chem. 2005,113, 53-59.
- [5] L.R. Keating, V.A. Szalai, Biochemistry 2004, 43, 15891–15900.