Electronic Supplementary Information

Tuning of Metal Enhanced Fluorescence for Sensing Applications

Mainak Ganguly, Chanchal Mondal, Joydeep Chowdhury, Jaya Pal, Anjali Pal, and Tarasankar Pal*

Figure S1: IR spectrum of CP (cm⁻¹, KBr disk). 1645 (vs, vC=N), 1613, 1583, 1494, 1485, 1465, 1420 (vs or **s**, vC=C).

Figure 2: Mass spectra of CP.

Figure S3: ¹H-NMR spectrum of CP in d⁶-DMSO. δ_{ppm} : 8.39 (3H, s, OH), 8.23 (2H, s, N=C-H), 6.6-7.4 (12H, m, Ar-H), 2.4-2.8 (12H, m, CH₂).

Figure S4: ¹³C-NMR of CP in DMSO. δ_{ppm} : 50.6-57.4 (N-*C*H₂-*C*H₂-N), 79.7 (Ar-*C*N₂), 167.2 (-H*C*=N), 119 and 133 (*C* in aromatic ring).

Figure S5: ESI-mass spectrum of CP capped AgNPs. Peak : 506 (OCP + 2Na + 2H), 612 (OCP + 2Na + Ag), 718 (OCP + 2Na + 2Ag), 824 (OCP + 2Na + 2Ag).

Figure S6: Excitation spectra of (a) unexposed CP, (b) CP-Ag(I) after one hour exposure and (c) CP-Cu(II) after 14 hours exposure and (d) CP-Au(III) after 11 hours exposure. Condition: $[CP] = 1.4 \times 10^{-4} M$, $[Ag(I)] = 4.2 \times 10^{-4} M$, $[Cu(II)] = 0.70 \times 10^{-4} M$, $[Au(III)] = 4.2 \times 10^{-4} M$.

Figure S7: Absorption spectra of (a) unexposed CP, (b) CP-Ag(I) after one hour exposure and (c) CP-Cu(III) after 14 hours exposure. Condition: $[CP] = 1.4 \times 10^{-4} \text{ M}$, $[Ag(I)] = 4.2 \times 10^{-4} \text{ M}$, $[Cu(II)] = 0.70 \times 10^{-4} \text{ M}$.

Figure S8: FESEM image of AuNPs obtained as precipitate by adding Ag(I) to the gold hydrosol. Condition: $[CP] = 1.4 \times 10^{-4} M$, $[Au(III)] = 4.2 \times 10^{-4} M$, $[Ag(I)] = 4.2 \times 10^{-4} M$.

Figure S9: Bar diagram and normalized fluorescence spectra (inset) indicating copper enhanced fluorescence in presence of different interfering metal ions. Conditions: $[CP] = 1.4 \times 10^{-5} \text{ M}$, $[Cu(II)] = 0.70 \times 10^{-5} \text{ M}$, $[other M^{n+}] = 0.70 \times 10^{-5} \text{ M}$, $\lambda_{ex} = 290 \text{ nm}$, exposure time = 14 hours.

Figure S10: ¹H NMR of (A) CP and (B) CP-Ag(I) after \sim 7 hours ageing in alkaline D₂O.

Figure S11: Raman spectra of solid CP, exposed CP in NaOH and exposed CP-Ag(I) in NaOH. Condition: $[CP] = 1.4 \times 10^{-4} M$, $[Au(III)] = 4.2 \times 10^{-4} M$, Exposure time = one hour.

Scheme S1: Mechanism for evolution of coinage metal nanoparticles with the oxidation of CP to its quinone form in aqueous alkaline medium.

Table S1: Elemental analysis for the compound CP.

Element	Calculated (%)	Experimental (%)
С	70.72	70.80
Ν	12.22	12.11
Н	06.59	06.50