Supporting Information

Kinetic and Mechanistic Studies of 1,3-Bis(2-pyridylimino)isoindolate Pt(II) Derivatives. Experimental and new Computational Approach. Isaac M. Wekesa and Deogratius Jaganyi*

School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa

Figure SI 1 Mass spectrum of 1,3-Bis(2-pyridylimino)isoindoline

Figure SI 3 Mass spectrum of 1,3-Bis(1-isoquinolylimino))isoindoline

Figure SI 5 Mass spectrum of 1,3-Bis(2-pyridylimino)benz(f)isoindoline platinum(II) chloride

Figure SI 6 Mass spectrum of 1,3-Bis(1-isoquinolylimino))isoindoline platinum(II) chloride

Figure SI 7 ¹H NMR spectrum of 1,3-Bis(2-pyridylimino)isoindoline

Figure SI 8 ¹H NMR spectrum of 1,3-Bis(2-pyridylimino)benz(f)isoindoline

Figure SI 10 ¹³C NMR spectrum of 1,3-Bis(2-pyridylimino)isoindoline

Figure SI 11 ¹³C NMR spectrum of 1,3-Bis(2-pyridylimino)benz(f)isoindoline

Figure SI 12 ¹³C NMR spectrum of 1,3-Bis(1-isoquinolylimino))isoindoline

Figure SI 13 ¹H NMR spectrum of 1,3-Bis(2-pyridylimino)isoindoline platinum(II) chloride

Complex	Nucleophiles	Wavelength, λ (nm)		
	Tu	443		
Pt2	Dmtu	504		
	Tmtu	483		
	Tu	485		
Pt3	Dmtu	434		
	Tmtu	414		
	Tu	310		
Pt4	Dmtu	305		
	Tmtu	369		

Table SI 1:Summary of the wavelengths (nm) used for monitoring the reactions between
Pt(II) complexes with neutral S-donor nucleophiles.

Table SI 2: Average observed rate constants, k_{obs} , s⁻¹, for the substitution of chloride from **Pt2** by thiourea nucleophiles, T = 298 K, *I* = 0.1 M (NaClO₄).

$\mathbf{Tu} \ (\lambda = 443 \ \mathrm{nm} \)$		Dmtu ($\lambda = 504$ nm)		Tmtu ($\lambda = 483$) nm	
Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs}, {\rm s}^{-1}$	Conc., M	$k_{\rm obs}, {\rm s}^{-1}$
0.000102	0.0158	0.000102	0.010	0.000102	0.00515
0.000204	0.0307	0.000204	0.016	0.000204	0.01024
0.000306	0.0485	0.000306	0.024	0.000306	0.01520
0.000408	0.0640	0.000408	0.030	0.000408	0.01741
0.000510	0.0785	0.000510	0.039	0.000510	0.02600

$\mathbf{Tu} \; (\lambda = 443 \; \mathrm{nm} \;)$		Dmtu ($\lambda = 50$	$\mathbf{mtu} \ (\lambda = 504 \text{ nm}) \qquad \mathbf{Tmtu} \ (\lambda = 4)$		33) nm
(1/T), K ⁻¹	$\ln(k_2/T)$	(1/T), K ⁻¹	$\ln(k_2/T)$	(1/T), K ⁻¹	$\ln(k_2/T)$
0.00341	-8.87	0.00341	-10.02	0.00341	-11.46
0.00335	-8.73	0.00335	-9.42	0.00335	-11.04
0.00330	-8.63	0.00330	-9.11	0.00330	-10.57
0.00324	-8.49	0.00324	-8.72	0.00324	-10.04
0.00319	-8.31	0.00319	-8.35	0.00319	-09.58

Table SI 3: Temperature dependence of k_2 , M⁻¹s⁻¹, for substitution of chloride from **Pt2** by thiourea nucleophiiles at mid-fold excess [metal complex], T = 298 K, I = 0.1M (NaClO₄).

Table SI 4:Average observed rate constants, k_{obs} , s⁻¹, for the substitution of chloridefrom Pt3 by thiourea nucleophiles, T = 298 K, I = 0.1 M (NaClO₄).

$Tu (\lambda = nm)$	Dmtu	$(\lambda = 434 \text{nm})$	$= 434 \text{nm}) \qquad \qquad \mathbf{Tmtu} \ (\lambda = \text{nm})$		
Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs}, {\rm s}^{-1}$
0.0020	0.0640	0.0020	0.0129	0.0020	0.0004161
0.0025	0.0770	0.0025	0.0155	0.0025	0.0005165
0.0030	0.0890	0.0030	0.0180	0.0030	0.0005980
0.0035	0.1010	0.0035	0.0220	0.0035	0.0007096
0.0040	0.1230	0.0040	0.0250	0.0040	0.0008330

$\mathbf{Tu} \ (\lambda = - \ \mathrm{nm} \) \qquad \mathbf{Dmtu}$		$\lambda = 434 \text{ nm}$	Tmt	$\mathbf{u} (\lambda = -) \text{ nm}$	
(1/T), K ⁻¹	$\ln(k_2/T)$	$(1/T), K^{-1}$	$\ln(k_2/T)$	$(1/T), K^{-1} ln(A)$	k ₂ /T)
0.00341	-8.325	0.00341	-10.285	0.00341	-13.65
0.00335	-8.130	0.00335	-9.714	0.00335	-13.40
0.00330	-7.920	0.00330	-9.4026	0.00330	-13.02
0.00324	-7.620	0.00324	-9.111	0.00324	-12.88
0.00319	-7.210	0.00319	-8.847	0.00319	-12.68

Table SI 5: Temperature dependence of k_2 , $M^{-1}s^{-1}$, for substitution of chloride from **Pt3** by thiourea nucleophiiles at mid-fold excess [metal complex], T = 298 K, I = 0.1M (NaClO₄).

Table SI 6:Average observed rate constants, k_{obs} , s⁻¹, for the substitution of chloridefrom Pt4by thiourea nucleophiles, T = 298 K, I = 0.1 M (NaClO₄).

$\mathbf{Tu} \ (\lambda = 310 \ \mathrm{nm} \)$		Dmtu $(\lambda = 2)$	Dmtu ($\lambda = 305 \text{ nm}$)		Tmtu ($\lambda = 369$) nm	
[Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs}, {\rm s}^{-1}$] X 10 ⁻⁴	
1.02	1.075	1.02	0.729	1.02	0.570	
2.04	2.190	2.04	1.330	2.06	1.140	
3.06	3.030	3.06	2.020	3.06	1.630	
4.08	3.870	4.08	2.450	4.08	2.340	
5.10	5.300	5.10	3.500	5.10	3.005	

$Tu (\lambda = 310 \text{ nm})$		Dmtu $(\lambda = 3)$	$\mathbf{Tmtu} \ (\lambda = 305 \text{ nm}) \qquad \mathbf{Tmtu} \ (\lambda = 305 \text{ nm})$		69) nm
(1/T), K ⁻¹	$\ln(k_2/T)$	(1/T), K ⁻¹	$\ln(k_2/T)$	$(1/T), K^{-1}$	$\ln(k_2/T)$
0.00341	-14.43	0.00341	-14.70	0.00341	-15.16
0.00335	-14.26	0.00335	-14.50	0.00335	-14.89
0.00330	-13.98	0.00330	-14.26	0.00330	-14.77
0.00324	-13.74	0.00324	-13.93	0.00324	-14.42
0.00319	-13.55	0.00319	-13.66	0.00319	-14.17

Table SI 7:Temperature dependence of k_2 , $M^{-1}s^{-1}$, for substitution of chloride from Pt4 by
thiourea nucleophiiles at mid-fold excess [metal complex], T = 298 K, I = 0.1M (NaClO₄).

Figure SI 14 Dependence of the pseudo-first-order rate constants (k_{obs}) on the concentration of thiourea nucleophiles for chloride substitution on **Pt3** in ethanol, *I*=0.1 M (NaClO₄), T = 298 K

Figure SI 15 Dependence of the pseudo-first-order rate constants (k_{obs}) on the concentration of thiourea nucleophiles for chloride substitution on Pt4 in ethanol, I=0.1 M (NaClO₄), T = 298 K

Figure SI 16 Eyring Plots of Pt3 with thiourea nucleophiles at different temperatures

Figure SI 17 Eyring Plots of Pt4 with thiourea nucleophiles at different temperatures

Figure S1 18 UV/Visible overlay kinetic spectra of Pt3 and Tmtu at 298K