Electronic Supplementary Information

Formation and reactivity of an (alkene)peroxoiridium(III) intermediate supported by an amidinato ligand

Matthew R. Kelley and Jan-Uwe Rohde*

Department of Chemistry, The University of Iowa, Iowa City, IA 52242

Contents		Page
Table S1.	Additional crystal and data collection parameters for 1	S2
Table S2.	Selected interatomic distances for 1	S2
Table S3.	Selected angles for 1	S3
Table S4.	Selected dihedral angles for 1	S3
Figure S1.	High-resolution electron impact ionization mass spectrum of 2	S4
Figure S2.	Solid-state IR spectrum 2	S4
Figure S3.	1 H, 1 H COSY spectrum of 3	S5
Figure S4.	$^{1}\text{H}, ^{13}\text{C}$ HSQC spectrum of 3	S6
Table S5.	¹ H and ¹³ C chemical shifts from the ¹ H, ¹³ C HSQC spectrum of 3	S6
Determinati	ion of the Self-Diffusion Coefficients of 1 and 3	S7
Figure S5.	Plots of $\ln(I/I_0)$ as a function of G^2 for 1 and 3	S 8
Figure S6.	Solid-state IR spectra of 1, 3, $3^{-18}O_2$, and the decay products of 3 and $3^{-18}O_2$	S9
Table S6.	IR absorption bands of 2 and 3 $(2200-1200 \text{ cm}^{-1})$	S10
Figure S7.	Electronic absorption spectra of 1 and 3 in toluene and the solution during	
-	decay of 3	S10
Table S7.	Mass spectrometric data of the decay products of 3 and $3^{-18}O_2$	S10

	<u> </u>
Crystal habit, color	blade, orange
Crystal size	$0.27 \ge 0.07 \ge 0.01 \text{ mm}^3$
<i>F</i> (000)	992
θ range for data collection	2.50 to 25.37°
Limiting indices	$-13 \le h \le 13, -13 \le k \le 12, -16 \le l \le 16$
Completeness to θ	99.3 % (θ=25.37°)
Max. and min. transmission	0.9473 and 0.2435
Refinement method	Full-matrix least-squares on F^2

 Table S1. Additional crystal and data collection parameters for [Ir{PhNC(Me)NPh}(cod)], 1.

Table S2. Selected interatomic distances (Å) for [Ir{PhNC(Me)NPh}(cod)], 1.^{*a*}

Molecule A		Molecule B		
Ir1–N1	2.094(6)	Ir2–N3	2.100(6)	
Ir1-N2	2.077(7)	Ir2–N4	2.076(7)	
Ir1–C15	2.102(8)	Ir2–C37	2.099(8)	
Ir1-C16	2.129(9)	Ir2-C38	2.132(9)	
Ir1-C19	2.102(8)	Ir2-C41	2.099(8)	
Ir1–C20	2.105(8)	Ir2-C42	2.127(8)	
N1-C1	1.323(10)	N3-C23	1.336(10)	
N1-C2	1.394(10)	N3-C24	1.390(9)	
N2C1	1.339(10)	N4-C23	1.334(10)	
N2-C8	1.416(10)	N4-C30	1.426(10)	
C1C14	1.506(10)	C23–C36	1.510(11)	
C15-C16	1.429(12)	C37–C38	1.421(12)	
C19–C20	1.398(12)	C41–C42	1.418(12)	

^{*a*} Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are labeled as indicated in Figure 1.

Molecule A		Molecule B		
N2-Ir1-N1	62.7(3)	N4–Ir2–N3	62.8(2)	
N1–Ir1–C15	102.0(3)	C37–Ir2–N3	102.7(3)	
N1–Ir1–C16	107.2(3)	N3-Ir2-C38	107.6(3)	
N1–Ir1–C19	156.1(3)	C41–Ir2–N3	155.0(3)	
N1-Ir1-C20	157.1(3)	N3-Ir2-C42	158.1(3)	
N2-Ir1-C19	101.3(3)	N4-Ir2-C41	100.8(3)	
N2-Ir1-C20	105.2(3)	N4-Ir2-C42	105.6(3)	
N2-Ir1-C15	156.0(3)	N4-Ir2-C37	156.0(3)	
N2-Ir1-C16	158.3(3)	N4-Ir2-C38	159.1(3)	
C15–Ir1–C16	39.5(3)	C37–Ir2–C38	39.2(3)	
C19–Ir1–C20	38.8(3)	C41–Ir2–C42	39.2(3)	
C15–Ir1–C19	98.4(3)	C37–Ir2–C41	98.5(3)	
C15–Ir1–C20	82.1(3)	C37–Ir2–C42	81.0(3)	
C19–Ir1–C16	81.2(3)	C41–Ir2–C38	81.1(3)	
C20–Ir1–C16	90.3(3)	C42–Ir2–C38	89.1(3)	
C1-N1-C2	127.0(7)	C23-N3-C24	127.8(7)	
C1–N1–Ir1	93.9(5)	C23–N3–Ir2	93.4(5)	
C2-N1-Ir1	138.4(5)	C24–N3–Ir2	138.3(6)	
C1-N2-C8	129.4(7)	C23-N4-C30	128.1(7)	
C1–N2–Ir1	94.1(5)	C23–N4–Ir2	94.5(5)	
C8-N2-Ir1	136.1(5)	C30-N4-Ir2	137.0(5)	
N1C1N2	109.2(7)	N4-C23-N3	109.1(7)	
N1C1C14	126.8(7)	N3-C23-C36	126.0(7)	
N2-C1-C14	123.9(8)	N4-C23-C36	124.9(8)	

Table S3. Selected angles (°) for [Ir{PhNC(Me)NPh}(cod)], 1.^{*a*}

^{*a*} Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are labeled as indicated in Figure 1.

Table S4. Selected dihedral angles (°) for [Ir{PhNC(Me)NPh}(cod)], **1**.^{*a*}

Molecule A		Molecule B	
N1-C1-N2 / N1-Ir1-N2	3.6(8)	N3-C23-N4 / N3-Ir2-N4	4.6(8)
N1-Ir1-N2 / C15-Ir1-C16	82.1(4)	N3-Ir2-N4 / C37-Ir2-C38	82.9(5)
N1-Ir1-N2 / C19-Ir1-C20	83.9(5)	N3-Ir2-N4 / C41-Ir2-C42	82.8(5)
C15-Ir1-C16 / C19-Ir1-C20	87.1(4)	C37–Ir2–C38 / C41–Ir2–C42	86.2(4)
$(N1,C1,N2,C14) / (C2 \rightarrow C7)^b$	41.8(4)	$(N3,C23,N4,C36) / (C24 \rightarrow C29)^{b}$	37.6(4)
$(N1,C1,N2,C14) / (C8 \rightarrow C13)^{b}$	54.3(3)	$(N3,C23,N4,C36) / (C30 \rightarrow C35)^{b}$	56.1(3)

^{*a*} Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are labeled as indicated in Figure 1. ^{*b*} Angle between the least-squares planes of the amidinate atoms (*e.g.*, N1, C1, N2, and C14) and the aryl ring atoms (*e.g.*, C2, C3, C4, C5, C6, and C7).

Figure S1. High-resolution electron impact ionization mass spectrum of **2**. Insets: Expanded views of the features attributed to 2^{+} and $\{2/2\}^{+}$ (bottom, —, black) and their calculated isotope distribution patterns (top, —, red).

Figure S2. Solid-state IR spectrum (KBr) of 2.

Figure S3. Top: ¹H, ¹H COSY spectrum of **3** in benzene- d_6 (ca. 15 mM, 500 MHz, 25 °C). The solid lines indicate correlations among alkene proton resonances and between alkene and methylene proton resonances. Bottom: Expanded view of the aromatic region of the ¹H, ¹H COSY spectrum of **3**. The solid lines indicate correlations among aromatic proton resonances.

Figure S4. ¹H,¹³C HSQC spectrum of **3** in benzene- d_6 (ca. 15 mM, 500 MHz, 25 °C). The asterisks denote solvent peaks (CH₂Cl₂, Et₂O, and an unknown contaminant).

Assignment		<i>δ</i> (¹ H)	δ ⁽¹³ C)
Ar	Group A	7.37	125.1
		7.12^{a}	128.8^{a}
		6.93	124.4
	Group B	7.07	129.4
		7.05	126.5
		6.97	125.2
$=CHCH_2-$	1-H, C-1	4.82	72.4
	2-H, C-2	3.95	75.8
	5-H, C-5	4.97	89.5
	6-H, C-6	4.20	97.8
$=CHCH_2-$	3-H _{ab} , C-3	1.92, 1.64	29.0
	4-H _{ab} , C-4	1.64, 1.26	33.6
	7-H _{ab} , C-7	1.99, 1.17	28.1
	8-H _{ab} , C-8	2.23	36.6
CCH ₃		1.34	17.1

Table S5. ¹H and ¹³C chemical shifts, δ (ppm), from the ¹H, ¹³C heteronuclear single-quantum coherence (HSQC) spectrum of [Ir{PhNC(Me)NPh}(cod)(O₂)] (3) in benzene- d_6 .

^{*a*} The resonance signals centered at δ (¹H) = 7.12 ppm and δ (¹³C) = 128.8 ppm partially overlap with the residual solvent peaks.

Determination of the Self-Diffusion Coefficients of 1 and 3

Diffusion ¹H NMR experiments to determine *D* values were conducted in triplicate, and, for each experiment, data of seven (1) or ten (3) suitable peaks were averaged. The average *D* values from three measurements were $(8.8 \pm 0.2) \cdot 10^{-10}$ and $(8.3 \pm 0.1) \cdot 10^{-10}$ m²·s⁻¹ for 1 and 3, respectively (ca. 17 mM 1 and ca. 15 mM 3 in benzene-*d*₆, 400 MHz, 25 °C). Intermediate 3 was found to decay by $\leq 10\%$ over the course of each measurement, introducing a minor error into *D*. Shown below are representative results for the CCH₃ resonance signals of 1 and 3. The plots in Figure S5 confirm the expected linear relationship between $\ln(I/I_0)$ and G^2 .

```
SIMFIT RESULTS for 1
================
INTENSITY fit : Diffusion : Variable Gradient :
I=I[0]*exp(-D*SOR(2*PI*qamma*Gi*LD)*(BD-LD/3)*1e4)
16 points for Peak 6, CCH3 resonance signal
Converged after 32 iterations!
           Comp. 1
Results
I[0]
              = 9.998e-001
Diff Con.
              = 8.704e - 010 m^2/s
              = 4.258e+003 Hz/G
Gamma
Little Delta
                     5.000m
              =
                    26.950m
Big Delta
              =
         7.767e-006
RSS
     =
         6.967e-004
SD
     =
Point
         Gradient
                                                Difference
                        Expt
                                      Calc
       6.740e-001
                     1.000e+000
                                   9.980e-001
                                                 -1.962e-003
   1
                     9.696e-001
    2
                                   9.702e-001
                                                 5.493e-004
       2.765e+000
                                   9.112e-001
    3
       4.855e+000
                     9.101e-001
                                                 1.125e-003
                     8.262e-001
    4
                                   8.269e-001
       6.945e+000
                                                 6.820e-004
    5
       9.036e+000
                     7.254e-001
                                   7.250e-001
                                                 -4.898e-004
    б
       1.113e+001
                     6.139e-001
                                   6.141e-001
                                                 2.269e-004
    7
       1.322e+001
                     5.027e-001
                                   5.026e-001
                                                 -7.296e-005
   8
       1.531e+001
                     3.970e-001
                                   3.975e-001
                                                 4.937e-004
   9
       1.740e+001
                     3.036e-001
                                   3.037e-001
                                                 1.016e-004
                                   2.241e-001
   10
       1.949e+001
                     2.239e-001
                                                 2.867e-004
                     1.601e-001
                                   1.599e-001
                                                -2.598e-004
   11
       2.158e+001
                                                -9.175e-004
   12
       2.367e+001
                     1.111e-001
                                   1.102e-001
   13
       2.576e+001
                     7.375e-002
                                   7.334e-002
                                                -4.055e-004
        2.785e+001
                     4.754e-002
                                   4.718e-002
                                                 -3.589e-004
   14
   15
        2.994e+001
                     2.946e-002
                                   2.932e-002
                                                 -1.381e-004
        3.203e+001
                     1.778e-002
                                   1.761e-002
                                                 -1.705e-004
   16
_____
```

SIMFIT F	RESULTS for 3			
INTENSIT I=I[0]*e 16 point Converge	TY fit : Diff exp(-D*SQR(2* is for Peak 1 ed after 35 i	usion : Variab PI*gamma*Gi*LD 1, CCH3 reson terations!	le Gradient :)*(BD-LD/3)*1e ance signal	4)
Results I[0] Diff Cor Gamma Little I Big Delt	Comp. 1 = 1. 1. = 8. = 4. Delta = ta =	020e+000 276e-010 m2/s 258e+003 Hz/G 5.000m 26.950m		
RSS = SD =	6.609e-004 6.427e-003			
Point 1 2 3 4 5 6 7 8 9 10 11 12	Gradient 6.740e-001 2.765e+000 4.855e+000 6.945e+000 9.036e+000 1.113e+001 1.322e+001 1.531e+001 1.740e+001 1.949e+001 2.158e+001	Expt 1.000e+000 9.892e-001 9.435e-001 8.625e-001 7.600e-001 6.420e-001 5.283e-001 4.210e-001 3.275e-001 2.454e-001 1.769e-001 1.217e-001	Calc 1.018e+000 9.913e-001 9.340e-001 8.516e-001 7.514e-001 6.418e-001 5.304e-001 4.243e-001 3.285e-001 2.461e-001 1.785e-001 1.253e-001	Difference 1.838e-002 2.142e-003 -9.517e-003 -1.095e-002 -8.534e-003 -1.807e-004 2.104e-003 3.326e-003 1.053e-003 6.947e-004 1.571e-003 3.599e-003
12 13 14 15 16	2.367e+001 2.576e+001 2.785e+001 2.994e+001 3.203e+001	1.217e-001 8.360e-002 5.539e-002 3.593e-002 2.194e-002	1.253e-001 8.508e-002 5.593e-002 3.558e-002 2.191e-002	3.599e-003 1.482e-003 5.395e-004 -3.495e-004 -3.130e-005

Figure S5. Plots of the natural logarithm of the intensity quotient, $\ln(I/I_0)$, as a function of the square of the gradient strength, G^2 , for the CCH₃ resonance signals of **1** (left; $R^2 = 0.999998$) and **3** (right; $R^2 = 0.999919$) in benzene- d_6 (ca. 17 mM **1** and ca. 15 mM **3**, 400 MHz, 25 °C).

Figure S6. Solid-state IR spectra (KBr) of **1** (top), **3** (middle) and the decay products of **3** (bottom). Spectra of **3**- $^{18}O_2$ and its decay products are shown in red (—).

$[Ir{PhNC(Me)NPh}(cod)(O_2)]$ (3) (2200–1200 cm ⁻¹). ^{<i>a</i>}					
Complex	$v_{\rm CO}~({\rm cm}^{-1})$	$v(\mathrm{cm}^{-1})$			
2	2060 (s), 2026 (s), 1985 (s), 1970 (m)	1593, 1524, 1487, 1419, 1262, 1212			
3		1594, 1510, 1479 (sh), 1427, 1358, 1334, 1301, 1277, 1261, 1227			

Table S6. IR absorption bands of $[{Ir(CO)_2}_2{\mu-PhNC(Me)NPh-\kappa N:\kappa N'}_2]$ (2) and $[Ir{PhNC(Me)NPh}(cod)(O_2)]$ (3) (2200–1200 cm⁻¹)^{*a*}

^{*a*} Solid state (KBr disk).

Figure S7. Electronic absorption spectra of 1 mM **1** in toluene at 0 °C (—, black), **3** generated from the reaction of **1** with O_2 (—, red), and the solution during decay of **3** (- - -, green; and —, blue; path length, 0.5 cm). Inset: Time course of the reaction of **1** in toluene with O_2 at 0 °C and subsequent decay of **3** ($\lambda = 402$ nm). The squares indicate the reaction times associated with the spectra shown (black, **1**; red, **3**; green and blue, solution during decay of **3**).

of the decay products of $[Ir{PnNC(Me)NPh}(cod)(O_2)](3)$.						
	ESI(+)MS				EIMS	
	$\{LH + H\}^+$	$\left\{3 - O_2 H\right\}^+$	$\{3 - \mathrm{OH}\}^+$	$\{3 - \mathbf{H}\}^+$	$\left\{3 - \mathrm{H_2O}\right\}^+$	${IrL_3}^{+\bullet}$
Found	211.2	509.4	525.2	541.2	524.1397	820.2827
Calcd	211.1	509.2	525.2	541.2	524.1440	820.2866
Found $(^{18}O_2)$	211.3	509.5	527.4	545.4	526.3	820.4

Table S7. Mass-to-charge ratios (m/z) from the electrospray ionization (ESI) and electron impact (EI) mass spectra of the decay products of [Ir{PhNC(Me)NPh}(cod)(O₂)] (**3**).^{*a*-*c*}

^{*a*} The reaction of [Ir{PhNC(Me)NPh}(cod)] (1) with O₂ (or ¹⁸O₂) was carried out as described in the Experimental Section, and the resulting solution was allowed to stand for at least 16 h. ^{*b*} LH = PhN=C(Me)NHPh. ^{*c*} High-resolution mass spectral data are reported with four decimal places.