Electronic Supplementary Information

Formation and reactivity of an (alkene)peroxoiridium(III) intermediate supported by an amidinato ligand

Matthew R. Kelley and Jan-Uwe Rohde*

Department of Chemistry, The University of Iowa, Iowa City, IA 52242
Contents Page
Table S1. Additional crystal and data collection parameters for $\mathbf{1}$ S2
Table S2. Selected interatomic distances for $\mathbf{1}$ S2
Table S3. Selected angles for $\mathbf{1}$ S3
Table S4. Selected dihedral angles for $\mathbf{1}$ S3
Figure S1. High-resolution electron impact ionization mass spectrum of 2 S4
Figure S2. Solid-state IR spectrum 2 S4
Figure S3. ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY spectrum of 3 S5
Figure S4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC spectrum of 3 S6
Table S5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts from the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC spectrum of 3 S6
Determination of the Self-Diffusion Coefficients of 1 and 3 S7
Figure S5. Plots of $\ln \left(I / I_{0}\right)$ as a function of G^{2} for 1 and 3 S8
Figure S6. Solid-state IR spectra of $\mathbf{1}, \mathbf{3}, \mathbf{3}^{-18} \mathrm{O}_{2}$, and the decay products of $\mathbf{3}$ and $\mathbf{3 - ~}^{18} \mathrm{O}_{2}$ S9
Table S6. IR absorption bands of 2 and $3\left(2200-1200 \mathrm{~cm}^{-1}\right)$ S10
Figure S7. Electronic absorption spectra of $\mathbf{1}$ and $\mathbf{3}$ in toluene and the solution during decay of 3 S10
Table S7. Mass spectrometric data of the decay products of 3 and $3-{ }^{18} \mathrm{O}_{2}$ S10

Table S1. Additional crystal and data collection parameters for [$\operatorname{Ir}\{\operatorname{PhNC}(\mathrm{Me}) \mathrm{NPh}\}(\operatorname{cod})], \mathbf{1}$.

	$\mathbf{1}$
Crystal habit, color	blade, orange
Crystal size	$0.27 \times 0.07 \times 0.01 \mathrm{~mm}^{3}$
$F(000)$	992
θ range for data collection	2.50 to 25.37°
Limiting indices	$-13 \leq h \leq 13,-13 \leq k \leq 12,-16 \leq l \leq 16$
Completeness to θ	$99.3 \%\left(\theta=25.37^{\circ}\right)$
Max. and min. transmission	0.9473 and 0.2435
Refinement method	Full-matrix least-squares on F^{2}

Table S2. Selected interatomic distances (\AA) for $[\operatorname{Ir}\{\operatorname{PhNC}(\mathrm{Me}) \mathrm{NPh}\}(\mathrm{cod})]$, 1. ${ }^{a}$

Molecule A		Molecule B	
Ir1-N1	$2.094(6)$	Ir2-N3	$2.100(6)$
Ir1-N2	$2.077(7)$	Ir2-N4	$2.076(7)$
Ir1-C15	$2.102(8)$	Ir2-C37	$2.099(8)$
Ir1-C16	$2.129(9)$	Ir2-C38	$2.132(9)$
Ir1-C19	$2.102(8)$	Ir2-C41	$2.099(8)$
Ir1-C20	$2.105(8)$	Ir2-C42	$2.127(8)$
N1-C1	$1.323(10)$	N3-C23	$1.336(10)$
N1-C2	$1.394(10)$	N3-C24	$1.390(9)$
N2-C1	$1.339(10)$	N4-C23	$1.334(10)$
N2-C8	$1.416(10)$	N4-C30	$1.426(10)$
C1-C14	$1.506(10)$	C23-C36	$1.510(11)$
C15-C16	$1.429(12)$	C37-C38	$1.421(12)$
C19-C20	$1.398(12)$	C41-C42	$1.418(12)$

${ }^{a}$ Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are labeled as indicated in Figure 1.

Table S3. Selected angles $\left({ }^{\circ}\right)$ for $[\operatorname{Ir}\{\operatorname{PhNC}(\mathrm{Me}) \mathrm{NPh}\}(\mathrm{cod})]$, 1. ${ }^{a}$

Molecule A		Molecule B	
N2-Ir1-N1	$62.7(3)$	N4-Ir2-N3	$62.8(2)$
N1-Ir1-C15	$102.0(3)$	C37-Ir2-N3	$102.7(3)$
N1-Ir1-C16	$107.2(3)$	N3-Ir2-C38	$107.6(3)$
N1-Ir1-C19	$156.1(3)$	C41-Ir2-N3	$155.0(3)$
N1-Ir1-C20	$157.1(3)$	N3-Ir2-C42	$158.1(3)$
N2-Ir1-C19	$101.3(3)$	N4-Ir2-C41	$100.8(3)$
N2-Ir1-C20	$105.2(3)$	N4-Ir2-C42	$105.6(3)$
N2-Ir1-C15	$156.0(3)$	N4-Ir2-C37	$156.0(3)$
N2-Ir1-C16	$158.3(3)$	N4-Ir2-C38	$159.1(3)$
C15-Ir1-C16	$39.5(3)$	C37-Ir2-C38	$39.2(3)$
C19-Ir1-C20	$38.8(3)$	C41-Ir2-C42	$39.2(3)$
C15-Ir1-C19	$98.4(3)$	C37-Ir2-C41	$98.5(3)$
C15-Ir1-C20	$82.1(3)$	C37-Ir2-C42	$81.0(3)$
C19-Ir1-C16	$81.2(3)$	C41-Ir2-C38	$81.1(3)$
C20-Ir1-C16	$90.3(3)$	C42-Ir2-C38	$89.1(3)$
C1-N1-C2	$127.0(7)$	C23-N3-C24	$127.8(7)$
C1-N1-Ir1	$93.9(5)$	C23-N3-Ir2	$93.4(5)$
C2-N1-Ir1	$138.4(5)$	C24-N3-Ir2	$138.3(6)$
C1-N2-C8	$129.4(7)$	C23-N4-C30	$128.1(7)$
C1-N2-Ir1	$94.1(5)$	C23-N4-Ir2	$94.5(5)$
C8-N2-Ir1	$136.1(5)$	C30-N4-Ir2	$137.0(5)$
N1-C1-N2	$109.2(7)$	N4-C23-N3	$109.1(7)$
N1-C1-C14	$126.8(7)$	N3-C23-C36	$126.0(7)$
N2-C1-C14	$123.9(8)$	N4-C23-C36	$124.9(8)$

${ }^{a}$ Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are labeled as indicated in Figure 1.

Table S4. Selected dihedral angles $\left({ }^{\circ}\right)$ for $[\operatorname{Ir}\{\operatorname{PhNC}(\mathrm{Me}) \mathrm{NPh}\}(\mathrm{cod})], 1 .{ }^{a}$

Molecule A	Molecule B			
N1-C1-N2 / N1-Ir1-N2	$3.6(8)$	N3-C23-N4 / N3-Ir2-N4	$4.6(8)$	
N1-Ir1-N2 / C15-Ir1-C16	$82.1(4)$	N3-Ir2-N4 / C37-Ir2-C38	$82.9(5)$	
N1-Ir1-N2 / C19-Ir1-C20	$83.9(5)$	N3-Ir2-N4 / C41-Ir2-C42	$82.8(5)$	
C15-Ir1-C16 / C19-Ir1-C20	$87.1(4)$	C37-Ir2-C38 / C41-Ir2-C42	$86.2(4)$	
$(\mathrm{N} 1, \mathrm{C} 1, \mathrm{~N} 2, \mathrm{C} 14) /(\mathrm{C} 2 \rightarrow \mathrm{C} 7)^{b}$	$41.8(4)$	$(\mathrm{N} 3, \mathrm{C} 23, \mathrm{~N} 4, \mathrm{C} 36) /(\mathrm{C} 24 \rightarrow \mathrm{C} 29)^{b}$	$37.6(4)$	
$(\mathrm{N} 1, \mathrm{C} 1, \mathrm{~N} 2, \mathrm{C} 14) /(\mathrm{C} 8 \rightarrow \mathrm{C} 13)^{b}$	$54.3(3)$	$(\mathrm{N} 3, \mathrm{C} 23, \mathrm{~N} 4, \mathrm{C} 36) /(\mathrm{C} 30 \rightarrow \mathrm{C} 35)^{b}$	$56.1(3)$	

${ }^{a}$ Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are labeled as indicated in Figure 1. ${ }^{b}$ Angle between the least-squares planes of the amidinate atoms (e.g., N1, C1, N2, and C14) and the aryl ring atoms (e.g., C2, C3, C4, C5, C6, and C7).

Figure S1. High-resolution electron impact ionization mass spectrum of 2. Insets: Expanded views of the features attributed to $\mathbf{2}^{+\bullet}$ and $\{\mathbf{2} / 2\}^{+\bullet}$ (bottom, 一, black) and their calculated isotope distribution patterns (top, —, red).

Figure S2. Solid-state IR spectrum (KBr) of 2.

Figure S3. Top: ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3}$ in benzene- d_{6} (ca. $15 \mathrm{mM}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$). The solid lines indicate correlations among alkene proton resonances and between alkene and methylene proton resonances. Bottom: Expanded view of the aromatic region of the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY spectrum of 3 . The solid lines indicate correlations among aromatic proton resonances.

Figure S4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC spectrum of 3 in benzene- d_{6} (ca. $15 \mathrm{mM}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$). The asterisks denote solvent peaks $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}\right.$, and an unknown contaminant).

Table S5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts, $\delta(\mathrm{ppm})$, from the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ heteronuclear single-quantum coherence (HSQC) spectrum of $\left[\operatorname{Ir}\{\mathrm{PhNC}(\mathrm{Me}) \mathrm{NPh}\}(\operatorname{cod})\left(\mathrm{O}_{2}\right)\right](3)$ in benzene- d_{6}.

Assignment		$\delta\left({ }^{1} \mathrm{H}\right)$	$\delta\left({ }^{13} \mathrm{C}\right)$
Ar	Group A	7.37	125.1
		7.12^{a}	128.8^{a}
	Group B	6.93	124.4
		7.07	129.4
		7.05	126.5
$=\mathrm{CHCH}_{2}-$	1-H, C-1	4.82	125.2
	2-H, C-2	3.95	72.4
	$5-\mathrm{H}, \mathrm{C}-5$	4.97	75.8
	6-H, C-6	4.20	89.5
$=\mathrm{CHCH}_{2}-$	$3-\mathrm{H}_{\mathrm{ab}}, \mathrm{C}-3$	$1.92,1.64$	97.8
	4-H		
	$7-\mathrm{H}_{\mathrm{ab}}, \mathrm{C}-4$	$1.64,1.26$	33.0
	8-H	$1.99,1.17$	28.1
CCH_{3}		2.23	36.6
		1.34	17.1

${ }^{a}$ The resonance signals centered at $\delta\left({ }^{1} \mathrm{H}\right)=7.12 \mathrm{ppm}$ and $\delta\left({ }^{13} \mathrm{C}\right)=128.8 \mathrm{ppm}$ partially overlap with the residual solvent peaks.

Determination of the Self-Diffusion Coefficients of 1 and 3

Diffusion ${ }^{1} \mathrm{H}$ NMR experiments to determine D values were conducted in triplicate, and, for each experiment, data of seven (1) or ten (3) suitable peaks were averaged. The average D values from three measurements were $(8.8 \pm 0.2) \cdot 10^{-10}$ and $(8.3 \pm 0.1) \cdot 10^{-10} \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}$ for $\mathbf{1}$ and $\mathbf{3}$, respectively (ca. 17 mM 1 and ca. 15 mM 3 in benzene- $d_{6}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$). Intermediate $\mathbf{3}$ was found to decay by $\leq 10 \%$ over the course of each measurement, introducing a minor error into D. Shown below are representative results for the CCH_{3} resonance signals of $\mathbf{1}$ and 3. The plots in Figure S5 confirm the expected linear relationship between $\ln \left(I / I_{0}\right)$ and G^{2}.

INTENSITY fit : Diffusion : Variable Gradient : $\mathrm{I}=\mathrm{I}[0] * \exp \left(-\mathrm{D}^{*} \mathrm{SQR}\left(2 * P I^{*}\right.\right.$ gamma*Gi*LD)*(BD-LD/3)*1e4)				
16 points for Peak 6, CCH3 resonance signal				
Converged after 32 iterations!				
Results Comp. 1				
$\mathrm{I}[0] \quad=9.998 \mathrm{e}-001$				
Diff Con. $=8.704 \mathrm{e}-010 \mathrm{~m} 2 / \mathrm{s}$				
Gamma $=4.258 \mathrm{e}+003 \mathrm{~Hz} / \mathrm{G}$				
Little Delta $=5.000 \mathrm{~m}$				
Big Delta $=26.950 \mathrm{~m}$				
RSS $=7.767 \mathrm{e}-006$				
$\mathrm{SD}=6.967 \mathrm{e}-004$				
Point	Gradient	Expt	Calc	Difference
1	6.740e-001	$1.000 \mathrm{e}+000$	9.980e-001	-1.962e-003
2	$2.765 \mathrm{e}+000$	9.696e-001	9.702e-001	5.493e-004
3	$4.855 \mathrm{e}+000$	9.101e-001	9.112e-001	1.125e-003
4	$6.945 \mathrm{e}+000$	8.262e-001	8.269e-001	6.820e-004
5	$9.036 \mathrm{e}+000$	7.254e-001	7.250e-001	-4.898e-004
6	$1.113 e+001$	6.139e-001	6.141e-001	2.269e-004
7	$1.322 \mathrm{e}+001$	5.027e-001	5.026e-001	-7.296e-005
8	$1.531 \mathrm{e}+001$	3.970e-001	3.975e-001	4.937e-004
9	$1.740 \mathrm{e}+001$	3.036e-001	3.037e-001	1.016e-004
10	$1.949 \mathrm{e}+001$	2.239e-001	2.241e-001	2.867e-004
11	$2.158 \mathrm{e}+001$	1.601e-001	1.599e-001	-2.598e-004
12	$2.367 \mathrm{e}+001$	1.111e-001	1.102e-001	-9.175e-004
13	$2.576 \mathrm{e}+001$	7.375e-002	7.334e-002	-4.055e-004
14	$2.785 \mathrm{e}+001$	4.754e-002	4.718e-002	-3.589e-004
15	$2.994 \mathrm{e}+001$	2.946e-002	2.932e-002	-1.381e-004
16	$3.203 \mathrm{e}+001$	$1.778 \mathrm{e}-002$	1.761e-002	-1.705e-004

SIMFIT RESULTS for 3
==============
INTENSITY fit : Diffusion : Variable Gradient :
$\mathrm{I}=\mathrm{I}[0] * \exp \left(-\mathrm{D}^{*} \operatorname{SQR}\left(2^{*} \mathrm{PI} \mathrm{*}^{*}\right.\right.$ gamma*Gi*LD)*(BD-LD/3)*1e4)
16 points for Peak 11, CCH3 resonance signal Converged after 35 iterations!

Results	Comp.	1
I[0]	$=$	$1.020 \mathrm{e}+000$
Diff Con.	$=$	$8.276 \mathrm{e}-010 \mathrm{~m} 2 / \mathrm{s}$
Gamma	$=$	$4.258 \mathrm{e}+003 \mathrm{~Hz} / \mathrm{G}$
Little Delta	$=$	5.000 m
Big Delta	$=$	26.950 m

```
RSS = 6.609e-004
SD = 6.427e-003
```

Point	Gradient	Expt	Calc	Difference
1	$6.740 \mathrm{e}-001$	$1.000 \mathrm{e}+000$	$1.018 \mathrm{e}+000$	$1.838 \mathrm{e}-002$
2	$2.765 \mathrm{e}+000$	$9.892 \mathrm{e}-001$	$9.913 \mathrm{e}-001$	$2.142 \mathrm{e}-003$
3	$4.855 \mathrm{e}+000$	$9.435 \mathrm{e}-001$	$9.340 \mathrm{e}-001$	$-9.517 \mathrm{e}-003$
4	$6.945 \mathrm{e}+000$	$8.625 \mathrm{e}-001$	$8.516 \mathrm{e}-001$	$-1.095 \mathrm{e}-002$
5	$9.036 \mathrm{e}+000$	$7.600 \mathrm{e}-001$	$7.514 \mathrm{e}-001$	$-8.534 \mathrm{e}-003$
6	$1.113 \mathrm{e}+001$	$6.420 \mathrm{e}-001$	$6.418 \mathrm{e}-001$	$-1.807 \mathrm{e}-004$
7	$1.322 \mathrm{e}+001$	$5.283 \mathrm{e}-001$	$5.304 \mathrm{e}-001$	$2.104 \mathrm{e}-003$
8	$1.531 \mathrm{e}+001$	$4.210 \mathrm{e}-001$	$4.243 \mathrm{e}-001$	$3.326 \mathrm{e}-003$
9	$1.740 \mathrm{e}+001$	$3.275 \mathrm{e}-001$	$3.285 \mathrm{e}-001$	$1.053 \mathrm{e}-003$
10	$1.949 \mathrm{e}+001$	$2.454 \mathrm{e}-001$	$2.461 \mathrm{e}-001$	$6.947 \mathrm{e}-004$
11	$2.158 \mathrm{e}+001$	$1.769 \mathrm{e}-001$	$1.785 \mathrm{e}-001$	$1.571 \mathrm{e}-003$
12	$2.367 \mathrm{e}+001$	$1.217 \mathrm{e}-001$	$1.253 \mathrm{e}-001$	$3.599 \mathrm{e}-003$
13	$2.576 \mathrm{e}+001$	$8.360 \mathrm{e}-002$	$8.508 \mathrm{e}-002$	$1.482 \mathrm{e}-003$
14	$2.785 \mathrm{e}+001$	$5.539 \mathrm{e}-002$	$5.593 \mathrm{e}-002$	$5.395 \mathrm{e}-004$
15	$2.994 \mathrm{e}+001$	$3.593 \mathrm{e}-002$	$3.558 \mathrm{e}-002$	$-3.495 \mathrm{e}-004$
16	$3.203 \mathrm{e}+001$	$2.194 \mathrm{e}-002$	$2.191 \mathrm{e}-002$	$-3.130 \mathrm{e}-005$
$===$				

Figure S5. Plots of the natural logarithm of the intensity quotient, $\ln \left(I / I_{0}\right)$, as a function of the square of the gradient strength, G^{2}, for the CCH_{3} resonance signals of $\mathbf{1}$ (left; $R^{2}=0.999998$) and 3 (right; $R^{2}=0.999919$) in benzene- $d_{6}\left(\mathrm{ca} .17 \mathrm{mM} 1\right.$ and ca. $15 \mathrm{mM} \mathrm{3}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$).

Figure S6. Solid-state IR spectra (KBr) of $\mathbf{1}$ (top), $\mathbf{3}$ (middle) and the decay products of $\mathbf{3}$ (bottom). Spectra of $3-{ }^{18} \mathrm{O}_{2}$ and its decay products are shown in red (-).

Table S6. IR absorption bands of $\left[\left\{\operatorname{Ir}(\mathrm{CO})_{2}\right\}_{2}\left\{\mu-\mathrm{PhNC}(\mathrm{Me}) \mathrm{NPh}-\kappa \mathrm{N}: \kappa \mathrm{N}^{\prime}\right\}_{2}\right]$ (2) and $\left[\mathrm{Ir}\{\mathrm{PhNC}(\mathrm{Me}) \mathrm{NPh}\}(\operatorname{cod})\left(\mathrm{O}_{2}\right)\right](3)\left(2200-1200 \mathrm{~cm}^{-1}\right) .{ }^{.}$

Complex	$v_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right)$	$\nu\left(\mathrm{cm}^{-1}\right)$
$\mathbf{2}$	$2060(\mathrm{~s}), 2026(\mathrm{~s})$,	$1593,1524,1487,1419,1262,1212$
$\mathbf{3}$	$1985(\mathrm{~s}), 1970(\mathrm{~m})$	
		$1594,1510,1479(\mathrm{sh}), 1427,1358,1334,1301,1277$, 1261,1227

${ }^{a}$ Solid state (KBr disk).

Figure S7. Electronic absorption spectra of 1 mM 1 in toluene at $0^{\circ} \mathrm{C}(-$, black), $\mathbf{3}$ generated from the reaction of $\mathbf{1}$ with $\mathrm{O}_{2}(-$, red), and the solution during decay of $\mathbf{3}(---$, green; and - , blue; path length, 0.5 cm). Inset: Time course of the reaction of $\mathbf{1}$ in toluene with O_{2} at $0^{\circ} \mathrm{C}$ and subsequent decay of $3(\lambda=402 \mathrm{~nm})$. The squares indicate the reaction times associated with the spectra shown (black, $\mathbf{1}$; red, $\mathbf{3}$; green and blue, solution during decay of $\mathbf{3}$).

Table S7. Mass-to-charge ratios (m / z) from the electrospray ionization (ESI) and electron impact (EI) mass spectra of the decay products of $\left[\operatorname{Ir}\{\mathrm{PhNC}(\mathrm{Me}) \mathrm{NPh}\}(\operatorname{cod})\left(\mathrm{O}_{2}\right)\right](3) .{ }^{a-c}$

	ESI $(+) \mathrm{MS}$ $\{\mathrm{LH}+\mathrm{H}\}^{+}$	$\left\{\mathbf{3}-\mathrm{O}_{2} \mathrm{H}\right\}^{+}$	$\{\mathbf{3}-\mathrm{OH}\}^{+}$	$\{3-\mathrm{H}\}^{+}$	EIMS	
	$\left\{\mathbf{3}-\mathrm{H}_{2} \mathrm{O}\right\}^{+\cdot}$	$\left\{\mathrm{IrL}_{3}\right\}^{+\bullet}$				
Found	211.2	509.4	525.2	541.2	524.1397	820.2827
Calcd	211.1	509.2	525.2	541.2	524.1440	820.2866
Found $\left({ }^{18} \mathrm{O}_{2}\right)$	211.3	509.5	527.4	545.4	526.3	820.4

${ }^{a}$ The reaction of $[\operatorname{Ir}\{\mathrm{PhNC}(\mathrm{Me}) \mathrm{NPh}\}(\operatorname{cod})]$ (1) with $\mathrm{O}_{2}\left(\right.$ or $\left.{ }^{18} \mathrm{O}_{2}\right)$ was carried out as described in the Experimental Section, and the resulting solution was allowed to stand for at least $16 \mathrm{~h} .{ }^{b} \mathrm{LH}=\mathrm{PhN}=\mathrm{C}(\mathrm{Me}) \mathrm{NHPh}$.
${ }^{c}$ High-resolution mass spectral data are reported with four decimal places.

