Electronic Supplementary Information

Dehydration Induced 2D-to-3D crystal-to-crystal Network Re-assembly and Ferromagnetism Tuningwithin two Chiral Copper(II)-Tartrate Coordination Polymers

Yen-Hsiang Liu ${ }^{[a]} *$, Szu-Hsuan Lee ${ }^{[a]}$, Jung-Chun Chiang ${ }^{[a]}$, Po-Chen Chen ${ }^{[a]}$, Po-Hsiu Chien ${ }^{[\alpha]}$ and Chen-I Yang ${ }^{[b]} *$
[a] Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
[b] Department of Chemistry, Tunghai University, Taichung, Taiwan

Keywords: coordination polymers / Chiral / ferromagnetism / superexchange

Table of Contents

Fig. S1. A view of the atom-to-atom distance between the O (carboxylate) atoms and the copper centers of the adjacent layers of compound 1: $\mathrm{Cu}(1) \cdots \mathrm{O}(2): 4.25 \AA ; \mathrm{Cu}(2) \cdots \mathrm{O}(4): 4.56 \AA$.
Fig. S2. Plots of $\chi_{\mathrm{M}}{ }^{-1}$ vs. T for compound 1. The solid line is estimated from the Curie-Weiss law.
Fig. S3. Plots of $\chi_{\mathrm{M}}{ }^{-1}$ vs. T for compound 2. The solid line is estimated from the Curie-Weiss law.
Fig. S4. A graphical representation of the 2D layer formed by the syn-anti bridged Cu -carboxylate coordination chains that derived from the 3D network of compound 2.

Fig. S5. The powder X-ray diffraction diagram of 1: (a) simulation; (b) as-synthesized sample.
Fig. S6. The powder X-ray diffraction diagram of 2: (a) simulation; (b) as-synthesized sample.

Table S1. Hydrogen bonds for $\mathbf{1}\left[\AA{ }^{\AA}\right.$ and $\left.{ }^{\circ}\right]$.

Fig. S1. A view of the atom-to-atom distance between the O (carboxylate) atoms and the copper centers of the adjacent layers of compound $\mathbf{1}$: $\mathrm{Cu}(1) \cdots \mathrm{O}(2): 4.25 \AA ; \mathrm{Cu}(2) \cdots \mathrm{O}(4): 4.56 \AA$.

Fig. S2. Plots of $\chi_{\mathrm{M}}{ }^{-1}$ vs. T for compound 1. The solid line is estimated from the Curie-Weiss law.

Fig. S3. Plots of $\chi_{\mathrm{M}}{ }^{-1}$ vs. T for compound 2. The solid line is estimated from the Curie-Weiss law.

Fig. S4. A graphical representation of the 2D layer formed by the syn-anti bridged Cu -carboxylate coordination chains that derived from the 3D network of compound $\mathbf{2}$.

Fig. S5. The powder X-ray diffraction diagram of 1: (a) simulation; (b) as-synthesized sample.

Fig. S6. The powder X-ray diffraction diagram of 2: (a) simulation; (b) as-synthesized sample.

Table S1. Hydrogen bonds for $\mathbf{1}\left[\AA\right.$ and ${ }^{\circ}$].

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})$	$\angle(\mathrm{DHA})$
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(91)$	0.85	1.84	$2.692(3)$	174.8
$\mathrm{O}(11)-\mathrm{H}(11 \mathrm{~A}) \cdots \mathrm{O}(92) \# 5$	0.83	1.81	$2.636(3)$	171.1
$\mathrm{O}(12)-\mathrm{H}(12 \mathrm{~A}) \cdots \mathrm{O}(94)$	0.88	1.69	$2.566(3)$	172.6
$\mathrm{O}(81)-\mathrm{H}(81 \mathrm{~A}) \cdots \mathrm{O}(2) \# 6$	0.82	1.99	$2.750(3)$	154.8
$\mathrm{O}(81)-\mathrm{H}(81 \mathrm{~B}) \cdots \mathrm{O}(91) \# 3$	0.85	1.86	$2.696(3)$	170.2
$\mathrm{O}(82)-\mathrm{H}(82 \mathrm{~A}) \cdots \mathrm{O}(4) \# 7$	0.82	1.93	$2.688(3)$	153.0
$\mathrm{O}(82)-\mathrm{H}(82 \mathrm{~B}) \cdots \mathrm{O}(92) \# 8$	0.82	2.60	$3.377(4)$	156.6
$\mathrm{O}(91)-\mathrm{H}(91 \mathrm{~A}) \cdots \mathrm{O}(93)$	0.95	1.82	$2.767(3)$	171.1
$\mathrm{O}(91)-\mathrm{H}(91 \mathrm{~B}) \cdots \mathrm{O}(2) \# 3$	0.93	2.02	$2.886(3)$	154.9
$\mathrm{O}(92)-\mathrm{H}(92 \mathrm{~A}) \cdots \mathrm{O}(1) \# 3$	0.85	2.15	$2.767(3)$	129.7
$\mathrm{O}(92)-\mathrm{H}(92 \mathrm{~A}) \cdots \mathrm{O}(81) \# 3$	0.85	2.65	$3.281(4)$	132.1
$\mathrm{O}(92)-\mathrm{H}(92 \mathrm{~B}) \cdots \mathrm{O}(94)$	0.85	1.91	$2.731(3)$	162.3
$\mathrm{O}(93)-\mathrm{H}(93 \mathrm{~A}) \cdots \mathrm{O}(82) \# 8$	0.78	2.04	$2.804(3)$	167.3
$\mathrm{O}(93)-\mathrm{H}(93 \mathrm{~B}) \cdots \mathrm{O}(6) \# 9$	0.87	1.87	$2.713(3)$	163.1
$\mathrm{O}(94)-\mathrm{H}(94 \mathrm{~A}) \cdots \mathrm{O}(93)$	0.86	1.99	$2.726(3)$	142.1
$\mathrm{O}(94)-\mathrm{H}(94 \mathrm{~B}) \cdots \mathrm{O}(3) \# 7$	0.86	1.91	$2.750(3)$	163.5
$\mathrm{O}(94)-\mathrm{H}(94 \mathrm{~B}) \cdots \mathrm{O}(4) \# 7$	0.86	2.55	$3.180(3)$	130.6
$\mathrm{O}(6)-\mathrm{H}(6 \mathrm{~B}) \cdots \mathrm{O}(11)$	0.89	1.92	$2.741(3)$	154.2
$\mathrm{O}(6)-\mathrm{H}(6 \mathrm{~B}) \cdots \mathrm{O}(5)$	0.89	2.23	$2.703(3)$	112.8

Symmetry transformations used to generate equivalent atoms:
\#1-x, y-1/2, -z+1 \#2 -x+1, y-1/2, -z+2 \#3 -x, y+1/2, -z+1
$\# 4-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+2 \quad \# 5 \mathrm{x}+1, \mathrm{y}, \mathrm{z} \quad \# 6-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+1$
\#7-x, y+1/2, -z+2 \#8 -x, y-1/2, -z+2 \#9 x-1, y, z

