Supporting Information

Characterization of One-Electron Oxidized Copper(II)-Salophen-Type Complexes; Effects of Electronic and Geometrical Structures on Reactivities

Kazutaka Asami,^a Akiko Takashina,^b Misato Kobayashi,^c Satoshi Iwatsuki,^c Tatsuo Yajima,^d Amélie Kochem,^e Maurice van Gastel,^e Fumito Tani,^f Takamitsu Kohzuma,^b Fabrice Thomas^g and Yuichi Shimazaki *^a

Fig. S1. Crystal structure of complex [1]SbF₆ in the crystal of 2:1 mixture of [1]SbF₆ and 1, [1]₃(SbF₆)₂.

	$[1]_{3}(SbF_{6})_{2}$	[2]SbF ₆
Formula	$C_{61}H_{76}N_3O_3Cu_{1.5}SbF_6$	$C_{31}H_{36}N_2O_4CuSbF_6Cl_2$
Formula weight	1230.35	1021.18
Color	brown	brown
Crystal size / mm	0.12 X 0.01 X 0.01	0.08 X 0.05 X 0.01
Crystal system	monoclinic	triclinic
Space group	C2/c	<i>P</i> -1
<i>a</i> (Å)	33.657(3)	10.8962(17)
<i>b</i> (Å)	17.489(1)	12.008(2)
<i>c</i> (Å)	19.991(2)	13.632(3)
α (°)	-	89.710(4)
$\beta(^{\circ})$	96.718(3)	81.617(4)
$\gamma(^{\circ})$	-	84.038(4)
$V(Å^3)$	11686(1)	1755.0(5)
Ζ	8	2
μ (Mo K α) (cm ⁻¹)	10.68	15.97
<i>F</i> (000)	5084.00	872.00
$D_{calc}(g/cm^3)$	1.399	1.648
$2\theta_{\max}$ (°)	55.0	55.0
No. reflections obsd.	13357	7965
No. reflections used.	13357	7965
No. variables	681	422
$R_I \{I > 2\sigma(I)\}^a$	0.0525	0.0857
$R_{\rm w}^{\ b}$	0.1686	0.2547

Table S1.	Crystal data for	r complexes	$[1]_3(SbF_6)_2$ at	nd [2]SbF6.
-----------	------------------	-------------	---------------------	-------------

 ${}^{a} R_{I} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \text{ for } I > 2\sigma(I) \text{ data.} \quad {}^{b} R_{w} = \{\Sigma \omega (|F_{o}| - |F_{c}|)^{2} / \Sigma \omega F_{o}^{2}\}^{1/2}; \ \omega = 1 / \sigma^{2}(F_{o}) = \{\sigma^{\Box}_{c}(F_{o}) + p^{2}/4 \cdot F_{o}^{2}\}^{-1}.$

Fig. S2. Reflectance spectrum of complexes 1 and [1]SbF₆: black line: complex 1; red line [1]SbF₆.

Fig. S3. UV-vis-NIR absorption spectra and reflectance spectrum of complex [2]SbF₆: (A) temperature-dependent UV-vis-NIR absorption spectral changes in CH_2Cl_2 ; (B) Reflectance spectrum of the solid sample.

Fig. S4. UV-vis-NIR absorption spectra and reflectance spectrum of complex [3]SbF₆: (A) temperature-dependent UV-vis-NIR absorption spectral changes in CH_2Cl_2 ; (B) Reflectance spectrum of the solid sample.

Fig. S5. Geometry optimized structure of 1 and selected bond distances.

Fig. S6. Geometry optimized structure of 1^+ and selected bond distances in the singlet state.

Fig. S7. Geometry optimized structure of 1^+ and selected bond distances in the triplet state.

Fig. S8. Geometry optimized structure of [1]SbF₆ and selected bond distances in the singlet state.

Fig. S9. Geometry optimized structure of $[1]SbF_6$ in the triplet state and selected bond distances (counter ion removed for clarity).

	, ,	4		
$T / ^{\circ}\mathrm{C}$	$[Cu]_0/mM^a$	[alcohol]/M	$10^{3} k_{obs}^{1 st} / s^{-1 b}$	
Reaction of $[1]^+$ with benzyl alcohol (C ₆ H ₅ CH ₂ OH)				
35.0	0.40	1.0	2.75, 2.82, 2.73	
30.0	0.40	1.0	2.06, 2.06, 2.03	
25.0	0.40	1.0	1.51, 1.52, 1.54	
20.0	0.20	1.0	1.18, 1.19	
20.0	0.40	1.0	1.11, 1.16, 1.17, 1.10, 1.12, 1.12	
20.0	0.40	0.8	0.863, 0.910, 0.924	
20.0	0.40	0.6	0.637, 0.653, 0.652	
20.0	0.40	0.4	0.389, 0.396, 0.395	
20.0	0.40	0.2	0.151, 0.167, 0.163	
20.0	0.40	0.1	0.0661, 0.0738, 0.0718	
15.0	0.40	1.0	0.795, 0.817, 0.837	
10.0	0.40	1.0	0.593, 0.587, 0.613	
Reaction of $[1]^+$ with α -benzyl- d_2 alcohol (C ₆ H ₅ CD ₂ OH)				
20.0	0.40	1.0	0.0895 (KIE = 13)	
Reaction of $[1]^+$ with benzyl alcohol-d (C ₆ H ₅ CH ₂ OD) ^c				
20.0	0.40	1.0	1.16 (KIE = 1.0)	
^{<i>a</i>} Initial concentration of complex $[1]^+$.				

Table S2. Observed pseudo first-order rate constants (k_{obs}^{1st}) for the reaction of $[1]^+$ with benzyl alcohol, α -benzyl- d_2 alcohol and benzyl alcohol-d under various conditions.

^b The k_{obs}^{lst} was determined by nonlinear least-squares fitting of the following equation for first-order reactions to the change in the absorbance at 582 nm with time for 4-half lives of the decrease of the complex.

 $A_t = A_{\infty} + (A_0 - A_{\infty})\exp(-k_{obs}^{1st}t)$ ^c More than 80% deuterated.

conzyr arconor, or conzyr az arconor and conzyr arconor a ander various conditions.				
$T / ^{\circ}\mathrm{C}$	$[Cu]_0/mM^a$	[alcohol]/M	$k_{\rm obs}^{2 {\rm nd}}$ / ${ m M}^{-1}$ s ^{-1 b}	
Reaction of	Reaction of $[2]^+$ with benzyl alcohol (C ₆ H ₅ CH ₂ OH)			
35.0	0.40	1.0	1.40	
30.0	0.40	1.0	1.07	
20.0	0.40	1.0	0.851, 0.708, 0.855, 0.767	
20.0	0.40	0.8	0.574, 0.650, 0.587	
20.0	0.40	0.6	0.416, 0.467, 0.422	
20.0	0.40	0.4	0.273, 0.256, 0.271	
20.0	0.40	0.2	0.0849, 0.101, 0.129	
20.0	0.40	0.1	0.0459, 0.0443	
15.0	0.40	1.0	0.658	
Reaction of	f $[2]^+$ with α -be	enzyl- d_2 alcohol ($C_6H_5CD_2OH$)	
20.0	0.40	1.0	0.824 (KIE = 1.0)	
Reaction of	$[2]^+$ with benz	zyl alcohol- d (C ₆ F	$I_5CH_2OD)^c$	

Table S3. Observed pseudo second-order rate constants (k_{obs}^{2nd}) for the reaction of [2]⁺ with benzyl alcohol, α -benzyl-d₂ alcohol and benzyl alcohol-d under various conditions.

0.40 ^{*a*} Initial concentration of complex $[2]^+$.

20.0

^b The k_{obs}^{2nd} was determined by nonlinear least-squares fitting of the following equation for second-order reactions to the change in the absorbance at 800 nm:

0.711 (KIE = 1.1)

 $A_t = A_{\infty} + (A_0 - A_{\infty})/(1 + k_{obs}^{2nd} [Cu]_0 t)$

where A_t and A_{∞} are the absorbances at time t and ∞ , respectively.^[S1] ^c More than 80% deuterated.

1.0

$T / {}^{\mathbf{o}}\mathbf{C}$	$[Cu]_0/mM^a$	[alcohol]/M	$10^4 k_{\rm obs}^{1 {\rm st}} / {\rm s}^{-1 b}$	
Reaction of $[3]^+$ with benzyl alcohol (C ₆ H ₅ CH ₂ OH)				
35.0	0.20	1.0	6.32, 7.14, 7.10	
30.0	0.20	1.0	3.76, 3.80	
25.0	0.20	1.0	2.24, 2.43	
20.0	0.20	2.2	1.77	
20.0	0.20	1.8	1.76	
20.0	0.20	1.4	1.61	
20.0	0.20	1.0	1.41, 1.45, 1.70, 1.43, 1.46, 1.45, 1.51	
20.0	0.20	0.8	1.32, 1,50	
20.0	0.20	0.6	1.30, 1.47	
20.0	0.20	0.4	1.22, 1.16, 1.11	
15.0	0.20	1.0	0.966	
10.0	0.20	1.0	0.548, 0.678	
Reaction of $[3]^+$ with α -benzyl- d_2 alcohol (C ₆ H ₅ CD ₂ OH)				
20.0	0.20	1.0	0.997 (KIE = 1.5)	
Reaction of $[3]^+$ with benzyl alcohol- <i>d</i> (C ₆ H ₅ CH ₂ OD) ^{<i>c</i>}				
20.0	0.20	1.0	1.34 (KIE = 1.1)	

Table S4. Observed pseudo first-order rate constants (k_{obs}^{1st}) corresponding to the oxidation step for the reaction of [3]⁺ with benzyl alcohol, α -benzyl- d_2 alcohol and benzyl alcohol-d under various conditions.

^{*a*} Initial concentration of complex $[3]^+$.

^b The k_{obs}^{1st} was determined by nonlinear least-squares fitting of the following equation for consecutive 2-step reactions to the change in the absorbance at 582 nm:

 $A_t = A_{\infty} + \alpha \cdot \exp(-k_{\text{obs}}^{1\text{st}}t) + \beta \cdot \exp(-k_{\text{dis}}t)$

where k_{dis} is the rate constant for the disappearing process of the aldehyde after the aldehyde formation, A_t and A_{∞} are the absorbances at time t and ∞ , respectively, and α and β are composite parameters.^[S2]

^c More than 80% deuterated.

References in Tables S3 and S4

[S1] J. H. Espenson, "Chemical Kinetics and Reaction Mechanisms", 2nd ed.; McGraw-Hill, New York, 2002.

[S2] R. G. Wilkins, "*Kinetics and Mechanism of Reactions of Transition Metal Complexes*", 2nd ed.; VCH, Weinheim, Germany, 1991.

Complex	ΔH^{\ddagger}	ΔS^{\ddagger}	$\Delta G^{\ddagger}(293 \mathrm{K})$	E_{a}
	/kcal mol ⁻¹	$/cal mol^{-1}K^{-1}$	/kcal mol ⁻¹	/kcal mol ^{$-1 b$}
$[1]^+$	10.0±0.1	-37.8±0.4	21.1±0.2	10.6±0.1
[2] ⁺	5.8±0.8	-39.2±2.7	17.5±1.6	6.4±0.8
[3] ⁺	16.2±0.5	-20.6±1.7	22.2±1.0	16.8±0.5
1,2-salcn ^c	10.2	-34.8	20.4	10.8
1,3-salcn ^c	10.7	-35.6	21.2	11.3

Table S5. Activation parameters for the benzyl alcohol oxidation with one-electron oxidized Cu(II)-salophen-type complexes.^{*a*}

^{*a*} Determined by the dependence of the observed rate constants at $[C_6H_5CH_2OH] = 1.0$ M

 $(k_{obs}^{1 \text{st-1M}} \text{ for } [1]^+ \text{ and } [3]^+, \text{ and } k_{obs}^{2nd-1M} \text{ for } [2]^+)$ on temperature. ^b Determined from

Arrhenius analyses. ^c Ref. 22.

Fig. S10. (a) Absorbance change with time at 582 nm for the reaction of complex $[1]^+$ (0.40 mM) with benzyl alcohol (1.0 M). (b) The plot of $\ln\{(A_t - A_{\infty})/(A_0 - A_{\infty})\}$ against time. The linearity of the plot indicates that this system obeys first-order kinetics.

Fig. S11. The dependence of the observed pseudo first-order rate constant (k_{obs}^{1st}) on the concentration of excess substrate for the reaction of $[1]^+$ with benzyl alcohol at 293 K. The data are shown with a linear fit (slope = $(1.21 \pm 0.02) \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$, intercept = $(-0.07 \pm 0.01) \times 10^{-3} \text{ s}^{-1}$).

Fig. S12. (a) Absorbance change (at 800 nm) with time for the reaction of complex $[2]^+$ (0.40 mM) with benzyl alcohol (1.0 M). (b) The plot of $(A_0 - A_\infty)/(A_t - A_\infty)$ against time. The linearity of the plot indicates that this system obeys second-order kinetics.

Fig. S13. The dependence of the observed pseudo second-order rate constant (k_{obs}^{2nd}) on the concentration of excess substrate for the reaction of $[2]^+$ with benzyl alcohol at 293 K. The data are shown with a linear fit (slope = $0.84 \pm 0.03 \text{ M}^{-2} \text{ s}^{-1}$, intercept = $-0.06 \pm 0.02 \text{ M}^{-1} \text{ s}^{-1}$).

Detailed description of kinetic analyses for the reaction of $[3]^+$ with benzyl alcohol

The absorbance change with time for the reaction of complex $[3]^+$ with benzyl alcohol showed a 2-step first-order reaction in the presence of a large excess concentration of $C_6H_5CH_2OH$ over the total concentration of $[3]^+$ (Fig. S14). GC-MS analyses revealed that the first reaction step (k_{obs}^{1st}) corresponds to the aldehyde formation. The k_{obs}^{1st} was determined by nonlinear least-squares fitting of the following equation for consecutive 2-step reactions to the change in the absorbance at 582 nm:

 $A_t = A_{\infty} + \alpha \cdot \exp(-k_{\text{obs}}^{1\text{st}}t) + \beta \cdot \exp(-k_{\text{dis}}t)$

where A_t and A_{∞} are the absorbances at time *t* and ∞ , respectively, and α and β are composite parameters.^[S2]

Reference

[S2] R. G. Wilkins, "*Kinetics and Mechanism of Reactions of Transition Metal Complexes*", 2nd ed.; VCH, Weinheim, Germany, 1991.

Fig. S14. (a) Absorbance change (at 582 nm) with time for the reaction of complex $[3]^+$ (0.20 mM) with benzyl alcohol (1.0 M). (b) Semi-log ($\log |A_{\infty} - A_t|$ vs. time) plot (blue) indicates that this system obeys consecutive 2-step first-order kinetics, in which the first step corresponds to the aldehyde formation process which was confirmed by GC-MS analysis.

Fig. S15. The dependence of the observed pseudo first-order rate constant (k_{obs}^{1st}) on the concentration of excess substrate for the reaction of $[3]^+$ with benzyl alcohol at 293 K. The data are shown with a saturated fit based on $k_{obs}^{1st} = Kk_1[C_6H_5CH_2OH]/(1 + K[C_6H_5CH_2OH])/(1 + K[C_6H_5CH_2OH])/(1 + K[C_6H_5CH_2OH])/(1 + K[C_6H_5CH_2OH])/(1 + K[C_6H_5CH_2OH])/(1 + K_1 = (1.9 \pm 0.1) \times 10^{-4} s^{-1}$ and $K = 3.7 \pm 0.7 M^{-1}$).

Fig. S16. Eyring plot of the conditional pseudo first-order rate constant at $[C_6H_5CH_2OH] = 1.0 \text{ M} (k_{obs}^{1\text{st-1M}} = k_2)$ for the reactions of complex $[1]^+$ with benzyl alcohol.

Fig. S17. Eyring plot of the conditional pseudo second-order rate constant at $[C_6H_5CH_2OH] = 1.0 \text{ M} (k_{obs}^{2nd-1M} = k_3)$ for the reactions of complex $[2]^+$ with benzyl alcohol.

Fig. S18. Eyring plot of the conditional pseudo first-order rate constant at $[C_6H_5CH_2OH] = 1.0 \text{ M} (k_{obs}^{1\text{st-1M}} = k_1K/(1+K))$ for the reactions of complex **[3]**⁺ with benzyl alcohol.