Supporting Information

A new cyclic supermolecular Zn(II) complex derived from N_2O_2 oxime chelate ligand with luminescence mechanochromism

Shou-Ting Zhang,^{*a*} Tian-Rong Li,^{*a*} Bao-Dui Wang,^{*a*} Zheng-Yin Yang,^{*a*} Jian Liu,^{*a*} Zhi-Yi Wang,^{*a*} and Wen-Kui Dong,^{*b*}

^aState Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China

^bSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China

Experimental

Materials and physical measurements

All chemicals were obtained from commercial suppliers and used without any further purification. Elemental analyses were carried out on an Elemental Vario EL analyzer. The IR spectra were obtained in KBr discs on a Therrno Mattson FTIR spectrometer in the 4000–400 cm⁻¹ region. Fluorescence spectra were generated on a Hitachi RF-5301 spectrophotometer equipped with quartz cuvettes of 1 cm path length. ¹H NMR and ¹³C NMR spectra were measured on the Bruker 400 MHz instruments using TMS as an internal standard and CDCl₃ and C₂D₆OS as solvent at room temperature. X-ray single crystal structures were obtained on a Rapid Auto Version 3.0 Rigaku RAXIS-RAPID detector. The melting points of the compounds were determined on a Beijing XT4-100x microscopic melting point apparatus.

Procedure for experiment

Preparation of H₂L.

To an ethanol solution (30 mL) of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) (1.70 g, 6.12 mmol) was added an ethanol solution (10 mL) of 1,2-bis(aminooxy)ethane (0.282 g, 3.06 mmol). The mixture solution was stirred at 65 °C for 8 h, after cooling to room temperature, the reaction mixture was filtered, washed successively with ethanol and ethanol / hexane (1:4), respectively. The precipitate was dried under vacuum, and obtained pale-yellow solid 1.65 g. Yield: 87.1%, m.p. 137-138 °C. ¹H NMR (400 MHz, CDCl₃): 1.58 (s, 3H), 4.66 (t, J = 8 Hz, 2H), 7.32 (m, 4H), 7.42 (m, 4H), 7.65 (d, J = 8Hz, 2H). ¹³C NMR (400 MHz, C₂D₆OS): 14.6, 15.7, 21.3, 60.3, 65.5, 73.0, 129.4, 135.8, 150.0, 170.9. IR: 3442, 3058, 2932, 2879, 1617, 1593, 1557, 1499, 1456, 1405, 1361, 1308, 1220, 1053, 970, 846, 746, 694. Anal. Calcd. for $C_{36}H_{32}N_6O_4$ (%):C 70.57, H 5.26, N 13.72. Found: C 70.50, H 5.37, N 13.61.

Preparation of the Zn(II) complexes

Preparation of the crystal [ZnL(CH₃OH)]: a solution of Zn(II) acetate dihydrate (11.0 mg, 0.05 mmol) in methanol (4 mL) was added dropwise to a solution of H₂L (30.1 mg, 0.05 mmol) in methanol (6 mL), which made the color of the mixing solution turned to colorless immediately, then the mixture was allowed to stand at room temperature for about one week. When the solvent was partially evaporated, several colorless block-shaped single crystals suitable for X-ray crystallographic analysis were obtained. ¹H NMR (400 MHz, C₂D₆OS): 1.57 (s, 3H), 3.13 (d, J= 5.2

Hz, 3H), 4.06 (t, J = 12.4 Hz, 2H), 7.32 (m, 4H), 7.12 (m, 4H), 7.35 (d, J = 8Hz, 2H), 8.07 (d, J = 7.6 Hz, 1H). ¹³C NMR (400 MHz, C₂D₆OS): 15.6, 49.1, 70.6, 95.0, 119.5, 124.7, 127.5, 128.8, 129.1, 134.6, 140.0, 147.7, 162.2, 165.9. IR: 3592, 3435, 3056, 1955, 1597, 1569, 1506, 1480, 1434, 1367, 1356, 1272, 1089, 1068, 1045, 1018, 908, 869, 779, 760, 712, 693, 610, 568, 507, 453. Anal. Calcd. for [ZnL(CH₃OH)] (%): C 62.76, H 4.84, N 11.87. Found: C 62.67, H 4.81, N 11.91.

Preparation of the powder of the Zn(II) complex (unground sample): the powder of the Zn(II) complex was synthesized according to an analogous method as the crystal sample. a solution of Zn(II) acetate dihydrate (104.4 mg, 0.47 mmol) in methanol (4 mL) was added dropwise to a solution of H₂L (261.2 mg, 0.43 mmol) in methanol (6 mL), which made the color of the mixing solution turned to colorless immediately, then the powder of the Zn(II) complex was obtained after two days. IR: 3436, 3058, 2924, 2834, 1958, 1600, 1568, 1501, 1456, 1434, 1373, 1354, 1241, 1088, 1070, 1049, 1015, 912, 870, 779, 759, 715, 696, 612, 571, 508, 454. Anal. Calcd. for the unground sample ZnL·2 CH₃OH (%): C 61.67, H 5.18, N 11.35. Found: C 61.71, H 5.13, N 11.39.

Preparation of the ground sample: the powder Zn(II) complex was ground in agate mortar to obtain the ground sample. IR: 3594, 3436, 3058, 2926, 1958, 1598, 1569, 1506, 1479, 1434, 1370, 1351, 1273, 1089, 1070, 1045, 1015, 908, 870, 780, 760, 712, 693, 612, 568, 508, 452. Anal. Calcd. for the ground sample [ZnLCH₃OH]·CH₃OH (%): C 61.67, H 5.18, N 11.35. Found: C 61.70, H 5.14, N 11.38.

X-ray structure determination of [ZnL(CH₃OH)]

The single crystals of the complex [ZnL(CH₃OH)] with approximate dimensions of $0.35 \times 0.32 \times 0.28$ mm were placed on a Bruker Smart diffractmeter equipped with Apex CCD area detector. The diffraction data were collected using a graphite monochromated Mo K α radition (λ = 0.71073 Å) at 293(2) K. The structures were solved by using the program SHELXS-97 and Fourier difference techniques, and refined by full-matrix least-squares method on F^2 using SHELXL-97. All hydrogen atoms were added theoretically.

Recovery experiment

To a ground sample (0.3065g) of the Zn(II) complex was added methanol solution (1.5 mL), then the mixture was allowed to stand at room temperature for about 20 min.

Captions:

Scheme 1 The synthetic route of H_2L .

Fig. S1 ¹H NMR of H_2L .

Fig. S2 13 C NMR of H₂L

Fig. S3 IR spectra of H₂L.

Fig. S4 ¹H NMR of ZnL.

Fig. S5 ¹³C NMR of ZnL.

Fig. S6. TGA-DTG analyses of the unground sample.

Fig. S7 TGA-DTG analyses of the ground sample.

Fig. S8 TGA-DTG analyses of the crystal sample.

Fig. S9 IR spectra of the unground sample (red), the ground sample (blue) and the crystal sample (black).

Fig. S10 Powder X-ray diffraction patterns of the unground sample (red), the ground sample (blue) and the crystal Zn(II) sample (black).

Fig. S11 Powder X-ray diffraction pattern of the recovered ground sample.

Fig. S12 The Fluorescence emission of H_2L (10mM) upon addition of Zn(II) (0.2 equivalent, 0.2 equivalent, 0.5 equivalent, 1.0 equivalent, 2.0 equivalent, 4.0 equivalent) in MeOH.

Table S1 Crystal data and structure refinement for [ZnL(CH₃OH)].

Table S2 Selected bond distances [Å] and bond angles [°] for [ZnL(CH₃OH)].

Scheme 1 The synthetic route of H_2L .

Fig. S1 ¹H NMR of H_2L .

Fig. S2 13 C NMR of H₂L

Fig. S3. IR spectra of H₂L.

Fig. S4 ¹H NMR of ZnL.

Fig. S5 ¹³C NMR of ZnL.

Fig. S6 TGA-DTG analyses of the unground sample.

Fig. S7 TGA-DTG analyses of the ground sample.

Fig. S8 TGA-DTG analyses of the crystal sample.

Fig. S9 IR spectra of the unground sample (red), the ground sample (blue) and the crystal sample (black).

Fig. S10 Powder X-ray diffraction patterns of the unground sample (red), the ground sample (blue) and the crystal Zn(II) sample (black).

Fig. S11. Powder X-ray diffraction pattern of the recovered ground sample.

Fig. S12 The Fluorescence emission of H_2L (10mM) upon addition of Zn(II) (0.2 equivalent, 0.2 equivalent, 0.5 equivalent, 1.0 equivalent, 2.0 equivalent, 4.0 equivalent) in MeOH.

	Zn(II) complex		
Empirical formula	C ₃₇ H ₃₄ N ₆ O ₅ Zn		
Formula weight	708.07		
Temperature (K)	293(2)		
Wavelength (Å)	0.71073		
Crystal system, Space group	Triclinic, P-1		
Unit cell dimensions	$0.35 \times 0.32 \times 0.28$		
<i>a</i> (Å)	10.6014(8)		
<i>b</i> (Å)	10.6656(8)		
<i>c</i> (Å)	15.898(2)		
α (°)	104.972(9)		
β (°)	105.000(9)		
γ(°)	91.803(6)		
Volume (Å ³)	1668.0(3)		
Z, Calculated density(Mg/m ³)	2, 1.410		
F (000)	736		
Crystal size (mm)	$0.35 \times 0.32 \times 0.28$		
θ range for data collection (°)	2.9584 to 28.5666		
Limiting indices	-13≤ h ≤13,		
	-13≤ k ≤13,		
	$-19 \le l \le 19$		
Reflections collected / unique	6683 / 458 [R(int) = 0.0399]		
Completeness to θ	$97.86 \% (\text{theta} = 26.32^{\circ})$		
Absorption correction	Semi-empirical from equivalents		
Refinement method	Full-matrix least-squares on F^2		
Final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0399, wR_2 = 0.0768$		
<i>R</i> indices (all data)	$R_1 = 0.0520, wR_2 = 0.0849$		

Table S1 Crystal data and structure refinement for [ZnL(CH₃OH)].

 $\omega = 1/[s^2(F_0^2) + (0.0202P)^2 + 0.5349P]$, where $P = (F_0^2 + 2F_c^2)/3$

Table 52 Selected bolid distances [A] and bolid angles [] for [Zin2(CH30H)].							
Bond	Dist.	Bond	Dist.	Bond	Dist.		
Zn(1)-O(1)	2.0204(2)	C(11)-N(3)	1.311(3)	O(3)-N(4)	1.436(2)		
Zn(1)-O(4)	1.9406(2)	C(20)-N(4)	1.303(3)	N(5)-N(6)	1.393(2)		
Zn (1)-O(5)	2.0682(2)	C(6)-N(1)	1.429(3)	C(1)-C(2)	1.382(4)		
Zn (1)-N(3)	2.0583(2)	C(7)-N(1)	1.368(3)	C(1)-C(6)	1.381(3)		
Zn (1)-N(4)	2.1986(2)	C(9)-N(2)	1.316(3)	C(2)-C(3)	1.379(4)		
O(1)-C(7)	1.269(2)	C(28)-N(5)	1.325(3)	C(3)-C(4)	1.372(4)		
O(4)-C(30)	1.282(2)	C(30)-N(6)	1.371(3)	C(18)-C(19)	1.506(4)		
C(7)-C(8)	1.420(3)	C(31)-N(6)	1.422(3)	O(3)-C(19)	1.425(3)		
C(27)-C(30)	1.410(3)	O(2)-N(3)	1.436(2)	N(1)-N(2)	1.399(2)		
Bond	Angles	Bond	Angles	Bond	Angles		
O(1)-Zn(1)-O(5)	86.61(7)	O(4)-Zn(1)-N(4)	88.15(7)	C(37A)-O(5)-Zn(1)	128.6(3)		
O(1)-Zn(1)-N(3)	89.96(7)	O(5)-Zn(1)-N(4)	86.20(7)	C(37B)-O(5)-Zn(1)	125.5(9)		
O(1)-Zn(1)-N(4)	172.48(7)	N(3)-Zn(1)-O(5)	138.34(8)	O(2)-N(3)-Zn(1)	114.61(1)		
O(4)-Zn(1)-O(1)	96.26(7)	N(3)-Zn(1)-N(4)	93.95(7)	C(11)-N(3)-Zn(1)	129.84(2)		
O(4)-Zn(1)-O(5)	108.91(7)	C(7)-O(1)-Zn(1)	122.49(14)	O(3)-N(4)-Zn(1)	123.47(1)		
O(4)-Zn(1)-N(3)	112.73(8)	C(30)-O(4)-Zn(1)	122.35(14)	C(20)-N(4)-Zn(1)	125.72(2)		
	a .	· · · ·	1.				

Table S2 Selected bond distances [Å] and bond angles [°] for [ZnL(CH₃OH)].

Symmetry transformations used to generate equivalent atoms: -x,-y,-z