Addition of a Phosphine Ligand Switches an *N*-Heterocyclic Carbene-Zirconium Catalyst from Oligomerization to Polymerization of 1-Hexene

Emmanuelle Despagnet-Ayoub,* Lawrence M. Henling, Jay A. Labinger*

and John E. Bercaw*

Contents

1. Experimental details.	2
2. Oligomerization/polymerization of 1-hexene	5
3. Crystallographic data.	16

<u>1. Experimental details:</u>

All experiments were performed using conventional vacuum line and Schlenk tube techniques or in a glovebox under nitrogen atmosphere. Solvents were dried by the method of Grubbs.¹ N,N'bis(3,5-di-*tert*-butyl-2-hydroxyphenyl)-1,2-phenylenediamine,² and ZrBn₄³ were prepared according to published procedure. Potassium hexamethyldisilazane were purchased from Sigma Aldrich and used as received. Benzene- d_6 was degassed and passed through a plug of activated alumina prior to use. NMR spectra were recorded on Varian Mercury 300, Varian INOVA 500 or Varian INOVA 600 spectrometers and referenced to the solvent residual peak. Elemental analyses were performed by Robertson Microlit Laboratories, Inc., Ledgewood, NJ 07852.

1,3-bis(3,5-di-*tert*-**butyl-2-hydroxyphenyl)-1***H*-**benzo**[*d*]**imidazol-3-ium chloride (1):** To a solution of phenylenediamine (6 g, 11.61 mmol) in triethyl orthoformate (120 mL) was added a solution of HCl_{cone} (0.67 mL) and 12 drops of acetic acid. After one hour at 60 °C, the white precipitate was collected and washed several times with hexane yielding the desired benzimidazolium 1 as a white powder (4.8 g, 8.52 mmol, 74 %). ¹H NMR (400 MHz, CDCl₃): δ 9.29 (s, 2H, OH), 9.04 (s, 1H, NCHN), 7.62 (s, 2H, CH), 7.68-7.59 (m, 4H, CH), 7.56 (d, *J* = 2.3 Hz, 2H, CH), 7.16 (d, *J* = 2.3 Hz, 2H, CH), 1.48 (s, 18H, *t*Bu), 1.34 (s, 18H, *t*Bu). ¹³C NMR (100 MHz, CDCl₃): δ 149.1 (C), 143.0 (C), 141.5 (NCHN), 141.4 (C), 132.2 (C), 127.7 (CH), 126.7 (CH), 121.0 (C), 120.7 (CH), 114.4 (CH), 35.7 (C_{*t*Bu}), 34.5 (C_{*t*Bu}), 31.4 (CH_{*t*Bu}), 29.6 (CH_{*t*Bu}). Anal. Calcd. for C₃₅H₄₇ClN₂O₂: C, 74.64; H, 8.41; N, 4.97. Found: C, 74.68; H, 8.27; N, 4.68.

(OCO)ZrBn₂ (2): A solution of benzimidazolium chloride salt 1 (0.1 g, 0.18 mmol) in toluene (4 mL) and a solution of KHMDS (35.4 mg, 0.18 mmol) in toluene (1 mL) were mixed and stirred for 30 minutes at room temperature. Then a solution of $ZrBn_4$ (77 mg, 0.17 mmol) in toluene (5 mL) was added and the mixture was stirred for an extra hour. After evaporation, the residue was solubilized in pentane and filtered through a pad of Celite. A yellow powder was obtained after evaporation affording the desired complex (0.123 g, 88 %). Further purification can be carried out by precipitation of the complex in a pentane solution at low temperature (-35 °C). ¹H NMR

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518-1520.

² Blackmore, K. J.; Lal, N.; Ziller, J. W.; Heyduck, A. F. Eur. J. Inorg. Chem. 2009, 735-743.

³ Zucchini, U.; Albizzati, E.; Giannini, U. J. Organomet. Chem. 1971, 26, 357-372.

(400 MHz, C₆D₆): δ 7.77 (m, 2H, CH), 7.75 (d, J = 2.4 Hz, 2H, CH), 7.62 (d, J = 2.4 Hz, 2H, CH), 6.99 (d, J = 7.8 Hz, 4H, CH), 6.88 (m, 2H, CH), 6.79 (pt, J = 7.7 Hz, 4H, CH), 6.50 (pt, J = 7.3 Hz, 2H, CH), 2.45 (s, 4H, CH₂Ph), 1.82 (s, 18H, *t*Bu), 1.40 (s, 18H, *t*Bu). ¹³C NMR (100 MHz, C₆D₆): δ 199.9 (NCN), 150.9 (C), 140.0 (C), 139.2 (C), 138.6 (C), 133.9 (C), 129.8 (CH), 129.1 (CH), 128.2 (C), 127.9 (C), 124.8 (CH), 122.4 (CH), 122.2 (CH), 118.2 (CH), 114.7 (CH), 57.6 (CH₂PH), 36.2 (C_{*t*Bu}), 34.7 (C_{*t*Bu}), 31.8 (CH_{*t*Bu}), 30.5 (CH_{*t*Bu}). Anal. Calcd. for C₄₉H₅₉N₂O₂Zr: C, 73.64; H, 7.44; N, 3.51. Found: C, 70,20; H, 7.41; N, 3.59. (This compound is air- and moisture-sensitive, and despite repeated attempts satisfactory %C analysis could not be obtained.)

Generation of $[(OCO)ZrBn][B(C_6F_5)_4]$ (3): A solution of zirconium complex 2 (20 mg, 0.025) mmol) in chlorobenzene-d5 (0.6 mL) was added to $[Ph_3C][B(C_6F_5)_4]$ (23 mg, 0.025 mmol) powder at room temperature. The dark yellow solution was transferred to a J-Young NMR tube and NMR analysis confirmed the quantitative formation of complex 3. ¹H NMR (500 MHz, $C_6D_5Cl, 0$ °C): δ 7.77 (m, 2H, aryl), 7.70 (d, J = 2.3 Hz, 2H, aryl), 7.58 (d, J = 2.3 Hz, 2H, aryl), 7.24 (m, 2H, aryl), 6.56 (br, 2H, Bn), 6.41 (br, 1H, Bn), 6.19 (br, 2H, Bn), 2.95 (s, 2H, CH₂Ph), 1.54 (s, 18H, tBu), 1.41 (s, 18H, tBu). ¹H NMR (300 MHz, C₆D₅Cl, rt): δ 7.78 (m, 2H, aryl), 7.68 (d, J = 2.3 Hz, 2H, aryl), 7.57 (d, J = 2.3 Hz, 1H, aryl), 7.24 (m, 2H, aryl), 6.57 (t, J = 7.4Hz, 2H, Bn), 6.42 (t, J = 7.4 Hz, 1H, Bn), 6.17 (d, J = 7.4 Hz, 1H, Bn), 2.94 (s, 2H, CH₂Ph), 1.53 (s, 18H, *t*Bu), 1.40 (s, 18H, *t*Bu). ¹³C NMR (125 MHz, C₆D₅Cl, 0 °C): δ 196.0 (NCN), 148.9 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}, C_{6}F_{5}$, 148.6 (C), 143.8 (C), 138.9 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}, C_{6}F_{5}$), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, ${}^{1}J_{CF} = 240.0 \text{ Hz}$, C₆F₅), 136.8 (d, {}^{1}J_{CF} = 240.0 \text{ Hz}, C₆F₅), 136.8 (d, {}^{1}J_{CF} 240.0 Hz, C₆F₅), 133.2 (C), 133.1 (C), 131.9 (C), 126.6 (CH), 123.8 (CH), 118.7 (CH), 114.3 (CH), 71.5 (${}^{1}J_{CH} = 142$ Hz, CH₂Ph), 35.9 (C_{tBu}), 34.9 (C_{tBu}), 31.5 (CH_{tBu}), 30.0 (CH_{tBu}). Broad peaks for the aromatic benzyl signals were observed at 0 °C, indicating the fluxionality of the benzyl group. Some aryl and benzyl signals overlapped with those of the chlorobenzene-d₅ and the 1,1,1,2-tetraphenylethane generated by abstraction of the benzyl group. ¹⁹F NMR (282.09 MHz, C_6D_5Cl , rt): δ -131.8 (br, 6F, o- C_6F_5), -162.6 (t, J = 20.6 Hz, 3F, p- C_6F_5), -166.3 (br, 6F, $m-C_6F_5$).

Generation of $[(OCO)ZrBn(PMe_3)][B(C_6F_5)_4]$ (4): In the J-Young NMR tube, one equivalent of trimethylphosphine was added to the solution of complex 3 in chlorobenzene-d₅ affording

quantitative formation of the cationic phosphine zirconium complex **4** as a light yellow solution. ¹H NMR (500 MHz, C₆D₅Cl, 0 °C): δ 7.72 (br s, 4H, aryl), 7.55 (br s, 2H, aryl), 7.39 (br, 3H, aryl), 7.32-7.23 (br peaks, 4H, aryl), 3.00 (d, $J_{HP} = 6.5$ Hz, CH_2Ph), 1.55 (s, 18H, tBu), 1.36 (s, 18H, tBu), 0.52 (d, $J_{HP} = 7.9$ Hz, 9H, PMe₃). ¹³C NMR (125 MHz, C₆D₅Cl, 0 °C): δ 196.4 (NCN), 149.1 (C), 148.9 (d, ¹ $J_{CF} = 241.0$ Hz, C₆F₅), 143.7 (C), 138.9 (d, ¹ $J_{CF} = 240.0$ Hz, C₆F₅), 138.2 (C), 136.8 (d, ¹ $J_{CF} = 240.0$ Hz, C₆F₅), 133.6 (C), 133.3 (CH), 132.0 (C), 129.9 (CH), 126.2 (CH), 123.6 (CH), 124.7 (CH), 118.3 (CH), 114.5 (CH), 63.2 (br, CH₂Ph), 35.8 (C_{*i*Bu}), 34.9 (C_{*i*Bu}), 31.4 (CH_{*i*Bu}), 29.6 (CH_{*i*Bu}), 12.7 (d, $J_{CP} = 20.6$ Hz, PMe₃). Signals for two quaternary carbons are missing, probably overlapping with those of the chlorobenzene-d₅ and the 1,1,1,2tetraphenylethane generated by abstraction of the benzyl group. ³¹P NMR (202.34 MHz, C₆D₅Cl, 0 °C): δ -20.2. ¹⁹F NMR (282.09 MHz, C₆D₅Cl, rt): δ -131.7 (br, 2F, o-C₆F₅), -162.4 (t, J = 20.6Hz, 1F, p-C₆F₅), -166.2 (br, 2F, m-C₆F₅).

Generation of [(OCO)ZrBn(PMe₃)₂][B(C₆F₅)₄] (5): In the J-Young NMR tube, one equivalent of trimethylphosphine was added to the solution of complex **4** in chlorobenzene-d₅ affording quantitative formation of the cationic bisphosphine zirconium complex **5** as a light yellow solution. ¹H NMR (500 MHz, C₆D₅Cl, 0 °C): δ 8.13 (m, 2H, aryl), 7.91 (d, *J* = 2.4 Hz, 2H, aryl), 7.73 (d, *J* = 2.4 Hz, 1H, aryl), 7.55 (d, *J* = 2.4 Hz, 2H, aryl), 7.39 (m, 5H, aryl), 7.28 (d, *J* = 2.4 Hz, 1H), 2.77 (t, *J* = 4.1 Hz, 2H, CH₂Ph), 1.48 (s, 18H, *t*Bu), 1.39 (s, 18H, *t*Bu), 0.45 (br, 9H, PMe₃), -0.10 (br, 9H, PMe₃). ¹³C NMR (125 MHz, C₆D₅Cl, 0 °C): δ 199.6 (NCN), 149.6 (C), 148.9 (d, ¹*J*_{CF} = 241.0 Hz, C₆F₅), 144.8 (C), 140.2 (C), 138.9 (d, ¹*J*_{CF} = 240.0 Hz, C₆F₅), 138.5 (C), 137.0 (C), 136.8 (d, ¹*J*_{CF} = 240.0 Hz, C₆F₅), 132.7 (CH), 131.3 (C), 130.2 (CH), 127.2 (CH), 123.8 (CH), 118.2 (CH), 114.6 (CH), 61.2 (br, CH₂Ph), 35.8 (C_{*t*Bu}), 34.9 (C_{*t*Bu}), 31.5 (CH_{*t*Bu}), 29.5 (CH_{*t*Bu}), 12.8 (br, PMe₃), 11.7 (br, PMe₃). Signals for two carbons are missing, probably overlapping with those of the chlorobenzene-d₅ and the 1,1,1,2-tetraphenylethane generated by abstraction of the benzyl group.³¹P NMR (282.09 MHz, C₆D₅Cl, 0 °C): δ -27.96 and -32.65 (ABq, 2P, *J*_{PP} = 99.8 Hz, PMe₃). ¹⁹F NMR (282.09 MHz, C₆D₅Cl, 10°C): δ -131.7 (br, 2F, o-C₆F₅), -162.4 (t, *J* = 20.6 Hz, 1F, p-C₆F₅), -166.2 (br, 2F, m-C₆F₅).

2. Oligomerization/polymerization of 1-hexene:

In a vial, a solution of complex 2 (5 mg, 0.0063 mmol) in chlorobenzene (0.7 mL) was added to $[Ph_3C][B(C_6F_5)_4]$ powder. After 10 minutes at room temperature, the solution was added to a mixture of 1-hexene (0.53 g, 0.63 mmol) and additive (none, phosphine or amine) and then stored in a 10 mL-Strauss flask. After stirring during 14 hours, the reaction was quenched with 0.1 mL of methanol and one drop of hydrochloric acid. In the case of oligomerization, biphenyl (50 mg) was added to get an internal reference for the GC, and then the mixture was filtered through a plug of silica.

		Conv.	C12	C18	C24	C30	C36	C42	Higher	Polymer
Entry Add	Additives	(%)	(%)	(%)	(%)	(%)	(%)	(%)	oligomers	$(g, Mn^{[b]})$
1	None	89	7	7	15	13	11	5	31	< 0.02
2	None ^[c]	68	7	6	12	10	8	5	20	< 0.02
3	$[\text{HNMe}_2\text{Ph}] \\ [\text{B}(\text{C}_6\text{F}_5)_4]^{[d]}$	5	4	1	-	-	-	-	-	-
4	2.6-lutidine	0	-	-	-	-	-	-	-	-
5	PPh ₃	96	7	6	16	15	13	6	33	< 0.02
6	PEt ₃	99	0	0	0	0	2	6	nd	0.48, 2965
7	PEt ₃ ^[e]	0	-	-	-	-	-	-	-	-
8	PMe ₃	99	0	0	0	0	0	0	nd	0.49, 10545
9	PCy ₃	0	-	-	-	-	-	-	-	-

Table S1. Oligomerization/polymerization of 1-hexene using complex 2.^[a]

[a] Conditions: $[2] = [Ph_3C][B(C_6F_5)_4] = 0.006 \text{ mmol}$; 1-hexene (0.53 g, 6.3 mmol); additive (1 equiv., 0.006 mmol), room temperature; reaction time: 14h, the oligomers obtained were analyzed by GC. [b] Calculated by ¹H NMR spectroscopy. [c] A second aliquot of 1000 equivalents of 1-hexene was added after 14 hours (so total 1-hexene at the end of reaction is 2000 equivalents). [d] The anilinium was used as activator. [e] 2 equivalents of PEt₃.

a) GC trace:

Figure S1. GC analysis of oligo(1-hexene)s obtained using $2/[Ph_3C][B(C_6F_5)_4]$ (Table S1, entry 1).

Figure S2. GC analysis of oligo(1-hexene)s obtained after addition of a total of 2000 equivalents of 1-hexene to $2/[Ph_3C][B(C_6F_5)_4$ (Table S1, entry 2). Conditions: $2/[Ph_3C][B(C_6F_5)_4$ was added to 1000 equivalents of 1-hexene; after 14 hours another 1000 equivalents of 1-hexene were added. The mixture was stirred an extra 14 hours before quenching.

Figure S3: GC analysis of oligo(1-hexene)s obtained using 2/[HNMe₂Ph][B(C₆F₅)₄] (Table S1, entry 3).

Figure S4. GC analysis of oligo(1-hexene)s obtained using $2/[Ph_3C][B(C_6F_5)_4]$ with one equivalent of triphenylphosphine (Table S1, entry 5).

b) Analysis of oligo(1-hexene)s obtained using 2/[Ph₃C][B(C₆F₅)₄ (Table S1, entry 1):

MALDI-TOF mass spectrometry:

The mass spectrum was acquired with a Voyager DE-PRO[™] MALDI-TOF mass spectrometer (Applied BioSystems) that uses a 20 Hz nitrogen laser (337 nm). The mass spectrometer was operated in reflectron mode for higher resolution and mass accuracy. The mass axis was calibrated superficially with the Sequazyme Kit[™] provided by the manufacturer. The method settings were: Accelerating voltage 20kV, Grid voltage 75%, Mirror voltage ratio 1.12, Guide wire 0.005%, Extraction delay time 100 nsec.

Oligo(1-hexene) was prepared at 10 mg/mL in THF, dithranol matrix at 20 mg/mL and AgTFA at 10 mg/mL. The oligo(1-hexene) was mixed with dithranol and AgTFA in a 1:2:1 ratio and spotted on a stainless steel MALDI target for analysis.

Figure S5. MALDI-TOF of oligo(1-hexene) obtained using $2/[Ph_3C][B(C_6F_5)_4$ (Table S1, entry 1). Peaks correspond to the silver adduct.

c) ¹H and ¹³C NMR spectrum of oligomer/polymer of 1-hexene:

Figure S6. ¹H NMR in chloroform-d₁ of oligo(1-hexene)s obtained using $2/[Ph_3C][B(C_6F_5)_4]$ (presence of chlorobenzene and biphenyl) (Table S1, entry 1).

Figure S7. ¹³C NMR in chloroform-d₁ of oligo(1-hexene)s obtained using $2/[Ph_3C][B(C_6F_5)_4]$ (presence of chlorobenzene and biphenyl) (Table S1, entry 1).

Figure S8. ¹H NMR in chloroform-d₁ of poly(1-hexene) obtained using $2/[Ph_3C][B(C_6F_5)_4$ with one equivalent of triethylphosphine (Mn = 2965) (presence of chlorobenzene and toluene) (Table S1, entry 6).

Figure S9. ¹³C NMR in chloroform-d₁ of poly(1-hexene) obtained using $2/[Ph_3C][B(C_6F_5)_4$ with one equivalent of triethylphosphine (Mn = 2965) (presence of chlorobenzene and toluene) (Table S1, entry 6).

Figure S10. ¹H NMR in chloroform-d₁ of poly(1-hexene) obtained using $2/[Ph_3C][B(C_6F_5)_4$ with one equivalent of trimethylphosphine (Mn = 10545) (presence of chlorobenzene and toluene) (Table S1, entry 8).

with one equivalent of trimethylphosphine (presence of chlorobenzene and toluene) (Table S1, entry 8).

d) Kinetic Analysis:

5 reactions were set up in parallel (see general procedure for oligomerization/polymerization of

1-hexene, page 5) and quenched at different times.

Quenching time	Conv.
(min.)	(%)
60	60
120	78
240	87
330	89
1550	89

Figure S12. Kinetic analysis using 2/[Ph₃C][B(C₆F₅)₄].

3. Crystallographic data for complex 2 (CCDC 942447):

Two independent molecules are observed in the cell:

Empirical formula	C53 H68 N2 O3 Zr
Formula weight	872.31
Crystallization solvent	ether
Crystal shape	lump
Crystal color	yellow
Crystal size	0.11 x 0.13 x 0.21 mm

Data Collection

Preliminary photogra	ph(s)	rotation	
Type of diffractomete	er	Bruker APEX-II CCD	
Wavelength		0.71073 Å MoK	
Data collection tempo	erature	100 K	
Theta range for 9041 in lattice determination	reflections used	2.25 to 30.38°	
Unit cell dimensions		a = 21.4874(19) Å b = 21.1068(18) Å c = 22.3719(18) Å	$\alpha = 90^{\circ}$ $\beta = 111.269(2)^{\circ}$ $\gamma = 90^{\circ}$
Volume		9455.2(14) Å ³	
Ζ		8	
Crystal system		monoclinic	
Space group		P 1 21/n 1 (# 14)	
Density (calculated)		1.226 g/cm ³	
F(000)		3712	
Theta range for data	collection	1.6 to 32.8°	
Completeness to theta	a = 25.000°	100.0%	
Index ranges		$-32 \le h \le 32, -30 \le k \le 31, -33$	$\leq 1 \leq 33$
Data collection scan	type	and scans	
Reflections collected		238757	
Independent reflectio	ns	33053 [$R_{int} = 0.0941$]	
Reflections > 2 (I)		21641	
Average (I)/(net I)		0.0802	
Absorption coefficien	nt	0.28 mm ⁻¹	
Absorption correction	1	Semi-empirical from equivaler	nts
	Max. and min. transmission	1.0000 a	and 0.8905

Structure Solution and Refinement

Primary solution method	?
Secondary solution method	?
Hydrogen placement	geom
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	33053 / 0 / 1091
Treatment of hydrogen atoms	constr
Goodness-of-fit on F ²	1.13
Final R indices [I>2 σ (I), 21641 reflections]	R1 = 0.0479, wR2 = 0.0924
R indices (all data)	R1 = 0.0980, wR2 = 0.1049
Type of weighting scheme used	calc
Weighting scheme used	
Max shift/error	0.002
Average shift/error	0.000
Extinction coefficient	n/a
Largest diff. peak and hole	1.01 and -0.73 e [.] Å ⁻³

Programs Used

-
SAINT V8.27B (Bruker-AXS, 2007)
APEX2 2013.2-0 (Bruker-AXS, 2007)
SAINT V8.27B (Bruker-AXS, 2007)
SHELXT (Sheldrick, 2012)
SHELXL-2013/2 (Sheldrick, 2013)
DIAMOND 3 (Crystal Impact, 1999)

Bond lengths [Å] and angles [°] for complex 2:

Zr(1)-O(1)	1.9957(12)	N(2)-C(1)	1.370(2)
Zr(1)-O(2)	1.9953(11)	N(2)-C(7)	1.408(2)
Zr(1)-C(1)	2.3358(17)	N(2)-C(22)	1.431(2)
Zr(1)-C(36)	2.3038(17)	C(2)-C(3)	1.388(2)
Zr(1)-C(37)	2.6406(17)	C(2)-C(7)	1.391(2)
Zr(1)-C(43)	2.2737(18)	C(3)-H(3)	0.9500
Zr(1)-C(44)	2.8246(16)	C(3)-C(4)	1.384(2)
O(1)-C(9)	1.341(2)	C(4)-H(4)	0.9500
O(2)-C(23)	1.3430(19)	C(4)-C(5)	1.390(3)
N(1)-C(1)	1.360(2)	C(5)-H(5)	0.9500
N(1)-C(2)	1.405(2)	C(5)-C(6)	1.378(3)
N(1)-C(8)	1.432(2)	C(6)-H(6)	0.9500

C(6)-C(7)	1.396(2)	C(31)-H(31A)	0.9800
C(8)-C(9)	1.403(2)	C(31)-H(31B)	0.9800
C(8)-C(13)	1.384(2)	C(31)-H(31C)	0.9800
C(9)-C(10)	1.411(2)	C(32)-C(33)	1.524(3)
C(10)-C(11)	1 397(3)	C(32)-C(34)	1 510(3)
C(10)- $C(14)$	1 532(2)	C(32)-C(35)	1 492(3)
C(11)-H(11)	0.9500	C(33)-H(33A)	0.9800
C(11)-C(12)	1 385(2)	C(33)-H(33B)	0.9800
C(12)- $C(13)$	1 391(2)	C(33)-H(33C)	0.9800
C(12) - C(18)	1 532(3)	C(34)-H(34A)	0.9800
C(12) = C(10) C(13) = H(13)	0.9500	C(34)-H(34B)	0.9800
C(14)-C(15)	1.540(2)	C(34)-H(34C)	0.9800
C(14) - C(16)	1 538(3)	$C(35)-H(35\Delta)$	0.9800
C(14) - C(17)	1.535(3)	C(35)-H(35R)	0.9800
C(15) H(15A)	0.0800	C(35) - H(35C)	0.9800
C(15) H(15R)	0.9800	$C(35) - \Pi(35C)$ $C(36) + \Pi(36A)$	0.9800
C(15) H(15C)	0.9800	C(36) - H(36A) C(26) - H(26B)	0.9900
C(15)- $H(15C)$	0.9800	$C(30) - \Pi(30B)$ C(26) - C(27)	0.9900
$C(10)$ - $\Pi(10A)$	0.9800	C(30)-C(37)	1.403(3)
C(10)-H(10B)	0.9800	C(37) - C(38)	1.405(3)
C(10)-H(10C)	0.9800	C(37)-C(42)	1.408(3)
C(17) - H(17A)	0.9800	C(38) - H(38)	0.9500
C(17) - H(17B)	0.9800	C(38) - C(39)	1.381(3)
C(17)-H(17C)	0.9800	C(39)-H(39)	0.9500
C(18) - C(19)	1.537(3)	C(39)-C(40)	1.3/3(3)
C(18)-C(20)	1.538(3)	C(40)-H(40)	0.9500
C(18)-C(21)	1.530(3)	C(40)-C(41)	1.381(4)
C(19)-H(19A)	0.9800	C(41)-H(41)	0.9500
C(19)-H(19B)	0.9800	C(41)-C(42)	1.382(3)
C(19)-H(19C)	0.9800	C(42)-H(42)	0.9500
C(20)-H(20A)	0.9800	C(43)-H(43A)	0.9900
C(20)-H(20B)	0.9800	C(43)-H(43B)	0.9900
C(20)-H(20C)	0.9800	C(43)-C(44)	1.473(2)
C(21)-H(21A)	0.9800	C(44)-C(45)	1.402(2)
C(21)-H(21B)	0.9800	C(44)-C(49)	1.397(3)
C(21)-H(21C)	0.9800	C(45)-H(45)	0.9500
C(22)-C(23)	1.403(2)	C(45)-C(46)	1.388(3)
C(22)-C(27)	1.398(2)	C(46)-H(46)	0.9500
C(23)-C(24)	1.410(2)	C(46)-C(47)	1.383(3)
C(24)-C(25)	1.388(2)	C(47)-H(47)	0.9500
C(24)-C(28)	1.536(3)	C(47)-C(48)	1.379(3)
C(25)-H(25)	0.9500	C(48)-H(48)	0.9500
C(25)-C(26)	1.395(3)	C(48)-C(49)	1.383(3)
C(26)-C(27)	1.379(2)	C(49)-H(49)	0.9500
C(26)-C(32)	1.541(2)	Zr(1B)-O(1B)	1.9945(12)
C(27)-H(27)	0.9500	Zr(1B)-O(2B)	2.0045(12)
C(28)-C(29)	1.544(3)	Zr(1B)-C(1B)	2.3335(17)
C(28)-C(30)	1.531(3)	Zr(1B)-C(36B)	2.3033(17)
C(28)-C(31)	1.530(3)	Zr(1B)-C(37B)	2.6583(16)
C(29)-H(29A)	0.9800	Zr(1B)-C(43B)	2.2784(18)
C(29)-H(29B)	0.9800	Zr(1B)-C(44B)	2.7608(17)
C(29)-H(29C)	0.9800	O(1B)-C(9B)	1.345(2)
C(30)-H(30A)	0.9800	O(2B)-C(23B)	1.342(2)
C(30)-H(30B)	0.9800	N(1B)-C(1B)	1.364(2)
C(30)-H(30C)	0.9800	N(1B)-C(2B)	1.406(2)
- () ()			

N(1B)-C(8B)	1.434(2)	C(25B)-C(26B)	1.398(2)
N(2B)-C(1B)	1.356(2)	C(26B)-C(27B)	1.381(2)
N(2B)-C(7B)	1.400(2)	C(26B)-C(32B)	1.530(3)
N(2B)-C(22B)	1.439(2)	C(27B)-H(27B)	0.9500
C(2B)-C(3B)	1.393(2)	C(28B)-C(29B)	1.534(3)
C(2B)-C(7B)	1.393(2)	C(28B)-C(30B)	1.541(3)
C(3B)-H(3B)	0.9500	C(28B)-C(31B)	1.534(3)
C(3B)-C(4B)	1.379(2)	C(29B)-H(29D)	0.9800
C(4B)-H(4B)	0.9500	C(29B)-H(29E)	0.9800
C(4B)-C(5B)	1.403(2)	C(29B)-H(29F)	0.9800
C(5B)-H(5B)	0.9500	C(30B)-H(30D)	0.9800
C(5B)-C(6B)	1.384(2)	C(30B)-H(30E)	0.9800
C(6B)-H(6B)	0.9500	C(30B)-H(30F)	0.9800
C(6B)-C(7B)	1.388(2)	C(31B)-H(31D)	0.9800
C(8B)-C(9B)	1.403(2)	C(31B)-H(31E)	0.9800
C(8B)-C(13B)	1 388(2)	C(31B)-H(31F)	0 9800
C(9B)-C(10B)	1 406(2)	C(32B)-C(33B)	1.534(3)
C(10B)-C(11B)	1 401(3)	C(32B)-C(34B)	1 537(3)
C(10B) - C(14B)	1 530(3)	C(32B)-C(35B)	1.537(3) 1.532(3)
C(11B)-H(11B)	0.9500	C(33B)-H(33D)	0.9800
C(11B) - C(12B)	1 386(3)	C(33B)-H(33E)	0.9800
C(12B) - C(13B)	1 393(2)	C(33B)-H(33E)	0.9800
C(12B) - C(18B)	1.539(2)	C(34B)-H(34D)	0.9800
C(12B)-C(10B)	0.9500	C(34B)-H(34E)	0.9800
C(14B)-C(15B)	1.541(3)	C(34B)-H(34E)	0.9800
C(14B)-C(15B)	1.535(3)	C(35B)-H(35D)	0.9800
C(14B)-C(17B)	1.535(5)	C(35B)-H(35E)	0.9800
C(15B)-H(15D)	0.9800	C(35B) + H(35E)	0.9800
C(15B)-H(15E)	0.9800	C(36B) H(36C)	0.9800
C(15B)-H(15E)	0.9800	C(36B) H(36C)	0.9900
$C(15D) - \Pi(15\Gamma)$ $C(16B) + \Pi(16D)$	0.9800	$C(36B) - \Pi(30D)$ $C(36B) - \Omega(37B)$	1.462(2)
C(16B) + H(16E)	0.9800	C(37B) C(38B)	1.402(2) 1.415(3)
C(10B) - H(10E) C(16B) + H(16E)	0.9800	C(37B) - C(38B) C(37B) - C(42B)	1.413(3) 1.404(3)
C(10B) - H(10F) C(17B) H(17D)	0.9800	C(38P) H(38P)	1.404(3)
C(17D) - H(17D) C(17D) - H(17E)	0.9800	$C(38D) - \Pi(38D)$ C(28D) - C(20D)	1.280(2)
$C(17D) - \Pi(17E)$ $C(17D) - \Pi(17E)$	0.9800	C(38B)-C(39B) C(20D) H(20D)	1.360(3)
$C(1/D) - n(1/\Gamma)$ C(19D) C(10D)	1.526(2)	$C(39B) - \Pi(39B)$ C(20B) C(40B)	0.9300 1 201(2)
C(18D) - C(19D)	1.520(5)	C(39B)-C(40B)	1.381(3)
C(18D) - C(20D) C(18D) - C(21D)	1.555(5)	$C(40B) - \Pi(40B)$ $C(40B) - \Omega(41B)$	0.9300 1 202(2)
C(10D) - C(21D) C(10D) U(10D)	1.337(3)	C(40D)-C(41D)	1.363(3)
C(19B) - H(19D)	0.9800	C(41B) - H(41B)	0.9500
C(19B) - H(19E)	0.9800	C(41B)-C(42B)	1.3/8(3)
C(19B)-H(19F)	0.9800	C(42B)-H(42B)	0.9500
C(20B) - H(20D)	0.9800	C(43B)-H(43C)	0.9900
C(20B) - H(20E)	0.9800	C(43B)-H(43D)	0.9900
C(20B)-H(20F)	0.9800	C(43B)-C(44B)	1.4/0(2)
C(21B)-H(21D)	0.9800	C(44B)-C(45B)	1.401(3)
C(21B)-H(21E)	0.9800	C(44B)-C(49B)	1.40/(2)
C(21B)-H(21F)	0.9800	C(45B) - H(45B)	0.9500
C(22B)-C(23B)	1.394(2)	C(45B)-C(46B)	1.379(3)
C(22B)-C(2/B)	1.389(2)	C(46B)-H(46B)	0.9500
C(23B)-C(24B)	1.419(2)	C(46B)-C(47B)	1.378(3)
C(24B)-C(25B)	1.383(2)	C(47B)-H(47B)	0.9500
C(24B)-C(28B)	1.539(2)	C(47B)-C(48B)	1.380(3)
C(25B)-H(25B)	0.9500	C(48B)-H(48B)	0.9500

C(48B)-C(49B)	1.383(3)	C(1)-N(1)-C(2)	111.02(13)
C(49B)-H(49B)	0.9500	C(1)-N(1)-C(8)	125.33(14)
O(3)-C(51)	1.418(3)	C(2)-N(1)-C(8)	123.62(14)
O(3)-C(52)	1.422(3)	C(1)-N(2)-C(7)	110.47(14)
C(50)-H(50A)	0.9800	C(1)-N(2)-C(22)	124.82(14)
C(50)-H(50B)	0.9800	C(7)-N(2)-C(22)	124.55(13)
C(50)-H(50C)	0.9800	N(1)-C(1)-Zr(1)	124 19(11)
C(50)- $C(51)$	1 486(4)	N(1) - C(1) - N(2)	$105\ 76(14)$
C(51)-H(51A)	0.9900	N(2)-C(1)-Zr(1)	103.70(11) 123.94(12)
C(51)-H(51R)	0.9900	C(3)-C(2)-N(1)	123.94(12) 132.04(16)
$C(52) - H(52\Delta)$	0.9900	C(3)-C(2)-C(7)	121 52(16)
C(52)-H(52R)	0.9900	C(7)-C(2)-V(1)	121.32(10) 106 15(14)
$C(52)$ - $\Pi(52B)$ C(52) $C(52)$	1.401(4)	C(2) - C(2) - N(1)	100.13(14)
C(52) - C(53) C(52) - U(52A)	0.0200	$C(2)-C(3)-\Pi(3)$	121.3 117.21(17)
$C(53)-\Pi(53A)$	0.9800	C(4) - C(3) - C(2)	11/.51(1/)
C(53)-H(53B)	0.9800	C(4)-C(3)-H(3)	121.5
C(33)-H(33C)	0.9800	C(3)-C(4)-H(4)	119.5
O(3B)-C(51B)	1.431(2)	C(3)-C(4)-C(5)	121.32(17)
O(3B)-C(52B)	1.396(2)	C(5)-C(4)-H(4)	119.3
C(50B)-H(50D)	0.9800	C(4)-C(5)-H(5)	119.2
C(50B)-H(50E)	0.9800	C(6)-C(5)-C(4)	121.56(17)
C(50B)-H(50F)	0.9800	C(6)-C(5)-H(5)	119.2
C(50B)-C(51B)	1.493(3)	C(5)-C(6)-H(6)	121.3
C(51B)-H(51C)	0.9900	C(5)-C(6)-C(7)	117.48(17)
C(51B)-H(51D)	0.9900	C(7)-C(6)-H(6)	121.3
C(52B)-H(52C)	0.9900	C(2)-C(7)-N(2)	106.31(14)
C(52B)-H(52D)	0.9900	C(2)-C(7)-C(6)	120.77(16)
C(52B)-C(53B)	1.500(3)	C(6)-C(7)-N(2)	132.49(16)
C(53B)-H(53D)	0.9800	C(9)-C(8)-N(1)	120.20(15)
C(53B)-H(53E)	0.9800	C(13)-C(8)-N(1)	118.58(15)
C(53B)-H(53F)	0.9800	C(13)-C(8)-C(9)	121.21(15)
		O(1)-C(9)-C(8)	119.83(15)
O(1)-Zr(1)-C(1)	77.55(5)	O(1)-C(9)-C(10)	121.49(15)
O(1)-Zr(1)-C(36)	92.86(6)	C(8)-C(9)-C(10)	118.67(16)
O(1)-Zr(1)-C(37)	98.87(5)	C(9)-C(10)-C(14)	120.89(16)
O(1)-Zr(1)-C(43)	98.50(6)	C(11)-C(10)-C(9)	117.71(16)
O(1)-Zr(1)-C(44)	88 98(5)	C(11) - C(10) - C(14)	121 37(15)
O(2)-Zr(1)-O(1)	152.65(5)	C(10)-C(11)-H(11)	118.1
O(2)-Zr(1)-C(1)	76.96(5)	C(12)-C(11)-C(10)	123 82(16)
O(2) Zr(1) C(36)	92 44(6)	C(12) - C(11) - H(11)	118.1
O(2) Zr(1) C(30) O(2) Zr(1) C(37)	100 34(5)	C(11)-C(12)-C(13)	117 35(16)
O(2)-Zr(1)-C(37) O(2)-Zr(1)-C(43)	101.08(6)	C(11) - C(12) - C(13)	117.33(10) 122.82(16)
O(2) - ZI(1) - C(43) O(2) - Zr(1) - C(44)	07.06(5)	C(11)-C(12)-C(18) C(13) C(12) C(18)	122.82(10) 110.82(16)
O(2)-ZI(1)- $O(44)O(1)$ $Zr(1)$ $O(27)$	155 02(6)	C(13)-C(12)-C(13) C(2) C(12) C(12)	119.02(10) 120.78(16)
C(1)- $ZI(1)$ - $C(37)$	133.93(0)	C(8) - C(13) - C(12)	120.76(10)
C(1)-ZI(1)-C(44) $C(26) Z_{r}(1) C(1)$	03.03(3) 122.24(6)	$C(3)-C(13)-\Pi(13)$	119.0
C(30)-ZI(1)-C(1)	122.34(6)	C(12)-C(13)-H(13)	119.0
C(36)-Zr(1)-C(37)	33.60(6)	C(10) - C(14) - C(15)	108.72(14)
C(36)-Zr(1)-C(44)	153.53(6)	C(10) - C(14) - C(16)	110.78(14)
C(3/)-Zr(1)-C(44)	120.10(5)	C(10)-C(14)-C(17)	111.86(16)
C(43)- $Zr(1)$ - $C(1)$	114.92(6)	C(16)-C(14)-C(15)	110.79(16)
C(43)- $Zr(1)$ - $C(36)$	122.73(6)	C(17)-C(14)-C(15)	107.26(15)
C(43)- $Zr(1)$ - $C(37)$	89.13(6)	C(17)-C(14)-C(16)	107.39(15)
C(43)- $Zr(1)$ - $C(44)$	31.26(6)	C(14)-C(15)-H(15A)	109.5
C(9)-O(1)-Zr(1)	142.92(10)	C(14)-C(15)-H(15B)	109.5
C(23)-O(2)-Zr(1)	145.47(11)	C(14)-C(15)-H(15C)	109.5

U(15A) C(15) U(15D)	100.5	C(22) C(27) U(27)	110.6
H(15A) - C(15) - H(15B) H(15A) - C(15) - H(15C)	109.5	$C(22)-C(27)-\Pi(27)$ C(26) C(27) C(22)	119.0
H(15R) - C(15) - H(15C)	109.5	C(26) - C(27) - C(22) C(26) - C(27) + U(27)	120.80(10)
$\Gamma(13B)-C(13)-\Pi(13C)$	109.5	C(20)-C(27)-H(27) C(24)-C(28)-C(20)	119.0
C(14)-C(16)-H(16A)	109.5	C(24)-C(28)-C(29)	109.99(10)
C(14)- $C(16)$ - $H(16B)$	109.5	C(30)-C(28)-C(24)	109.4/(16)
C(14)-C(16)-H(16C)	109.5	C(30)-C(28)-C(29)	110.96(15)
H(16A)-C(16)-H(16B)	109.5	C(31)-C(28)-C(24)	112.32(15)
H(16A)-C(16)-H(16C)	109.5	C(31)-C(28)-C(29)	107.36(17)
H(16B)-C(16)-H(16C)	109.5	C(31)-C(28)-C(30)	106.70(17)
C(14)-C(17)-H(17A)	109.5	C(28)-C(29)-H(29A)	109.5
C(14)-C(17)-H(17B)	109.5	C(28)-C(29)-H(29B)	109.5
C(14)-C(17)-H(17C)	109.5	C(28)-C(29)-H(29C)	109.5
H(17A)-C(17)-H(17B)	109.5	H(29A)-C(29)-H(29B)	109.5
H(17A)-C(17)-H(17C)	109.5	H(29A)-C(29)-H(29C)	109.5
H(17B)-C(17)-H(17C)	109.5	H(29B)-C(29)-H(29C)	109.5
C(12)-C(18)-C(19)	109.60(16)	C(28)-C(30)-H(30A)	109.5
C(12)-C(18)-C(20)	109.33(16)	C(28)-C(30)-H(30B)	109.5
C(19)-C(18)-C(20)	109.13(16)	C(28)-C(30)-H(30C)	109.5
C(21)-C(18)-C(12)	112.24(15)	H(30A)-C(30)-H(30B)	109.5
C(21)-C(18)-C(19)	108.44(17)	H(30A)-C(30)-H(30C)	109.5
C(21)-C(18)-C(20)	108.05(16)	H(30B)-C(30)-H(30C)	109.5
C(18)-C(19)-H(19A)	109.5	C(28)-C(31)-H(31A)	109.5
C(18)-C(19)-H(19B)	109.5	C(28)-C(31)-H(31B)	109.5
С(18)-С(19)-Н(19С)	109.5	C(28)-C(31)-H(31C)	109.5
H(19A)-C(19)-H(19B)	109.5	H(31A)-C(31)-H(31B)	109.5
H(19A)-C(19)-H(19C)	109.5	H(31A)-C(31)-H(31C)	109.5
H(19B)-C(19)-H(19C)	109.5	H(31B)-C(31)-H(31C)	109.5
C(18)-C(20)-H(20A)	109.5	C(33)-C(32)-C(26)	109.54(15)
C(18)-C(20)-H(20B)	109.5	C(34)-C(32)-C(26)	109.88(17)
C(18)-C(20)-H(20C)	109.5	C(34)-C(32)-C(33)	106.7(2)
H(20A)-C(20)-H(20B)	109.5	C(35)-C(32)-C(26)	112.43(17)
H(20A)-C(20)-H(20C)	109.5	C(35)-C(32)-C(33)	107.1(2)
H(20B)-C(20)-H(20C)	109.5	C(35)-C(32)-C(34)	111.0(2)
C(18)-C(21)-H(21A)	109.5	C(32)-C(33)-H(33A)	109.5
C(18)-C(21)-H(21B)	109.5	C(32)-C(33)-H(33B)	109.5
C(18)-C(21)-H(21C)	109.5	C(32)-C(33)-H(33C)	109.5
H(21A)-C(21)-H(21B)	109.5	H(33A)-C(33)-H(33B)	109.5
H(21A)-C(21)-H(21C)	109.5	H(33A)-C(33)-H(33C)	109.5
H(21B)-C(21)-H(21C)	109.5	H(33B)-C(33)-H(33C)	109.5
C(23)-C(22)-N(2)	120 61(14)	C(32)-C(34)-H(34A)	109.5
C(27)-C(22)-N(2)	118 73(15)	C(32)-C(34)-H(34B)	109.5
C(27)-C(22)-C(23)	120.65(16)	C(32)-C(34)-H(34C)	109.5
O(2)-C(23)-C(22)	119 78(15)	H(34A)-C(34)-H(34B)	109.5
O(2) - C(23) - C(24)	121 25(15)	H(34A)-C(34)-H(34C)	109.5
C(2) - C(23) - C(24)	121.25(15) 118.96(15)	H(34R) - C(34) - H(34C)	109.5
C(22) - C(23) - C(24)	120.30(15)	C(32) C(35) H(35A)	109.5
C(25)-C(24)-C(23)	118 11(16)	C(32)-C(35)-H(35R)	109.5
C(25) - C(24) - C(28)	121 54(16)	C(32) - C(35) - H(35D) C(32) - C(35) - H(35C)	109.5
C(24)-C(24)-C(26) C(24)-C(25)-H(25)	118 3	H(35A) - C(35) - H(35C)	109.5
$C(24) - C(25) - \Gamma(25)$ C(24) - C(25) - C(26)	173 45(17)	H(35A) - C(35) - H(35B) H(35A) - C(25) - H(25C)	109.5
C(24)- $C(25)$ - $C(20)C(26)$ $C(25)$ $U(25)$	123.43(17) 118.2	H(35A)-C(35)-H(35C) H(25B) C(25) H(25C)	109.5
$C(20)-C(23)-\Pi(23)$ C(25)-C(26)-C(22)	110.3	$\Pi(33D) - U(33) - \Pi(33U)$ $T_r(1) C(24) \Pi(24A)$	109.5
C(23)-C(20)-C(32) C(27)-C(24)-C(25)	120.29(10)	$Z_{I}(1) - C(30) - \Pi(30A)$ $Z_{r}(1) - C(24) - \Pi(24B)$	114.5
C(27) - C(20) - C(25)	11/.00(10) 100.00(10)	LI(1)-U(30)-H(30B) H(2(A), C(2(A), H(2(D)))	114.5
U(27)-U(20)-U(32)	122.00(10)	П(30A)-С(30)-Н(30B)	111.5

C(37)-C(36)-Zr(1)	85.91(10)	O(1B)-Zr(1B)-C(37B)	100.03(5)
C(37)-C(36)-H(36A)	114.3	O(1B)-Zr(1B)-C(43B)	101.55(6)
C(37)-C(36)-H(36B)	114.3	O(1B)-Zr(1B)-C(44B)	99.55(5)
C(36)-C(37)-Zr(1)	60.49(9)	O(2B)-Zr(1B)-C(1B)	77.85(5)
C(38)-C(37)-Zr(1)	99.35(11)	O(2B)-Zr(1B)-C(36B)	90.30(6)
C(38)-C(37)-C(36)	121.25(17)	O(2B)-Zr(1B)-C(37B)	98.60(5)
C(38)-C(37)-C(42)	116.61(18)	O(2B)-Zr(1B)-C(43B)	100.89(6)
C(42)-C(37)-Zr(1)	102.31(12)	O(2B)-Zr(1B)-C(44B)	89.98(5)
C(42)-C(37)-C(36)	121.36(19)	C(1B)-Zr(1B)-C(37B)	158.19(6)
C(37)-C(38)-H(38)	119.2	C(1B)-Zr(1B)-C(44B)	81.87(5)
C(39)-C(38)-C(37)	121.7(2)	C(36B)-Zr(1B)-C(1B)	124.89(6)
C(39)-C(38)-H(38)	119.2	C(36B)-Zr(1B)-C(37B)	33.30(6)
C(38)-C(39)-H(39)	119.8	C(36B)-Zr(1B)-C(44B)	152.58(6)
C(40)-C(39)-C(38)	120.4(2)	C(37B)- $Zr(1B)$ - $C(44B)$	119.83(5)
C(40)- $C(39)$ - $H(39)$	119.8	C(43B)-Zr(1B)-C(1B)	113.64(6)
C(39)-C(40)-H(40)	120.2	C(43B)-Zr(1B)-C(36B)	121.45(6)
C(39)-C(40)-C(41)	119.5(2)	C(43B)-Zr(1B)-C(37B)	88.17(6)
C(41)-C(40)-H(40)	120.2	C(43B)-Zr(1B)-C(44B)	32 13(6)
C(40)- $C(41)$ - $H(41)$	1197	C(9B)-O(1B)-Zr(1B)	144 80(11)
C(40)- $C(41)$ - $C(42)$	120 6(2)	C(23B)-O(2B)-Zr(1B)	141 55(10)
C(42)-C(41)-H(41)	1197	C(1B)-N(1B)-C(2B)	110 60(14)
C(37)-C(42)-H(42)	119.4	C(1B)-N(1B)-C(8B)	125 05(15)
C(41)-C(42)-C(37)	121 1(2)	C(2B)-N(1B)-C(8B)	124 35(14)
C(41)-C(42)-H(42)	119.4	C(1B)-N(2B)-C(7B)	111 15(14)
$Z_r(1)-C(43)-H(43A)$	112.6	C(1B)-N(2B)-C(22B)	124 57(14)
Zr(1)-C(43)-H(43B)	112.6	C(7B)-N(2B)-C(22B)	124.14(14)
H(43A)-C(43)-H(43B)	110.1	N(1B)-C(1B)-Zr(1B)	12558(12)
C(44)-C(43)-Zr(1)	95 49(11)	N(2B)-C(1B)-Zr(1B)	123.82(11)
C(44)-C(43)-H(43A)	112.6	N(2B)-C(1B)-N(1B)	105.81(14)
C(44)-C(43)-H(43B)	112.6	C(3B)-C(2B)-N(1B)	132.31(16)
C(43)-C(44)-Zr(1)	53.25(9)	C(7B)-C(2B)-N(1B)	106.09(14)
C(45)-C(44)-Zr(1)	107.35(12)	C(7B)-C(2B)-C(3B)	121.14(16)
C(45)-C(44)-C(43)	121 11(17)	C(2B)-C(3B)-H(3B)	121.4
C(49)-C(44)-Zr(1)	104 14(11)	C(4B)-C(3B)-C(2B)	117 11(16)
C(49)-C(44)-C(43)	121 45(16)	C(4B)-C(3B)-H(3B)	121.4
C(49)-C(44)-C(45)	117.13(16)	C(3B)-C(4B)-H(4B)	119.2
C(44)-C(45)-H(45)	1197	C(3B)-C(4B)-C(5B)	121 66(16)
C(46)-C(45)-C(44)	120 68(18)	C(5B)-C(4B)-H(4B)	119.2
C(46)-C(45)-H(45)	1197	C(4B)-C(5B)-H(5B)	119.2
C(45)-C(46)-H(46)	119.5	C(6B)-C(5B)-C(4B)	121 22(17)
C(47)-C(46)-C(45)	120 92(18)	C(6B)-C(5B)-H(5B)	119.4
C(47)-C(46)-H(46)	119.5	C(5B)-C(6B)-H(6B)	121.5
C(46)-C(47)-H(47)	120.4	C(5B)-C(6B)-C(7B)	117 05(16)
C(48)-C(47)-C(46)	119 14(18)	C(7B)-C(6B)-H(6B)	121.5
C(48)-C(47)-H(47)	120.4	C(2B)-C(7B)-N(2B)	106 05(15)
C(47)-C(48)-H(48)	119.9	C(6B)-C(7B)-N(2B)	131 67(16)
C(47)-C(48)-C(49)	120 22(19)	C(6B)-C(7B)-C(2B)	121 77(16)
C(49)-C(48)-H(48)	119.9	C(9B)-C(8B)-N(1B)	119 99(15)
C(44)-C(49)-H(49)	119.1	C(13B)-C(8B)-N(1B)	118 91(15)
C(48)-C(49)-C(44)	121 87(17)	C(13B)-C(8B)-C(9B)	121 11(16)
C(48)-C(49)-H(49)	119.1	O(1B)-C(9B)-C(8B)	119 94(15)
O(1B)-Zr(1B)-O(2B)	151 13(5)	O(1B)-C(9B)-C(10B)	121 14(16)
O(1B)-Zr(1B)-C(1B)	76 65(5)	C(8B)-C(9B)-C(10B)	118 90(16)
O(1B)-Zr(1B)-C(36B)	93 28(6)	C(9B)-C(10B)-C(14B)	120 82(16)
	JJ.20(0)		120.02(10)

C(11B)-C(10B)-C(9B)	117.78(17)	C(18B)-C(21B)-H(21E)	109.5
C(11B)-C(10B)-C(14B)	121.39(17)	C(18B)-C(21B)-H(21F)	109.5
C(10B)-C(11B)-H(11B)	118.2	H(21D)-C(21B)-H(21E)	109.5
C(12B)-C(11B)-C(10B)	123.69(18)	H(21D)-C(21B)-H(21F)	109.5
C(12B)-C(11B)-H(11B)	118.2	H(21E)-C(21B)-H(21F)	109.5
C(11B)-C(12B)-C(13B)	117.33(17)	C(23B)-C(22B)-N(2B)	120.44(15)
C(11B)-C(12B)-C(18B)	123.18(17)	C(27B)-C(22B)-N(2B)	117.98(15)
C(13B)-C(12B)-C(18B)	119.49(17)	C(27B)-C(22B)-C(23B)	121.50(16)
C(8B)-C(13B)-C(12B)	120.73(17)	O(2B)-C(23B)-C(22B)	120.09(15)
C(8B)-C(13B)-H(13B)	119.6	O(2B)-C(23B)-C(24B)	121.54(15)
C(12B)-C(13B)-H(13B)	119.6	C(22B)-C(23B)-C(24B)	118.35(16)
C(10B)-C(14B)-C(15B)	110.12(17)	C(23B)-C(24B)-C(28B)	119.99(15)
C(10B)-C(14B)-C(16B)	109.60(16)	C(25B)-C(24B)-C(23B)	117.67(16)
C(10B)-C(14B)-C(17B)	112.17(17)	C(25B)-C(24B)-C(28B)	122.31(16)
C(16B)-C(14B)-C(15B)	111.37(17)	C(24B)-C(25B)-H(25B)	117.9
C(17B)-C(14B)-C(15B)	106.61(18)	C(24B)-C(25B)-C(26B)	124.11(17)
C(17B)-C(14B)-C(16B)	106.92(18)	C(26B)-C(25B)-H(25B)	117.9
C(14B)-C(15B)-H(15D)	109.5	C(25B)-C(26B)-C(32B)	120.56(16)
C(14B)-C(15B)-H(15E)	109.5	C(27B)-C(26B)-C(25B)	116.87(16)
C(14B)-C(15B)-H(15F)	109.5	C(27B)-C(26B)-C(32B)	122.56(16)
H(15D)-C(15B)-H(15E)	109.5	C(22B)-C(27B)-H(27B)	119.5
H(15D)-C(15B)-H(15F)	109.5	C(26B)-C(27B)-C(22B)	120.96(16)
H(15E)-C(15B)-H(15F)	109.5	C(26B)-C(27B)-H(27B)	119.5
C(14B)-C(16B)-H(16D)	109.5	C(24B)-C(28B)-C(30B)	108.93(15)
C(14B)-C(16B)-H(16E)	109.5	C(29B)-C(28B)-C(24B)	111.19(15)
C(14B)-C(16B)-H(16F)	109.5	C(29B)-C(28B)-C(30B)	109.86(15)
H(16D)-C(16B)-H(16E)	109.5	C(29B)-C(28B)-C(31B)	107.00(16)
H(16D)-C(16B)-H(16F)	109.5	C(31B)-C(28B)-C(24B)	111.92(16)
H(16E)-C(16B)-H(16F)	109.5	C(31B)-C(28B)-C(30B)	107.88(16)
C(14B)-C(17B)-H(17D)	109.5	C(28B)-C(29B)-H(29D)	109.5
C(14B)-C(17B)-H(17E)	109.5	C(28B)-C(29B)-H(29E)	109.5
C(14B)-C(17B)-H(17F)	109.5	C(28B)-C(29B)-H(29F)	109.5
H(17D)-C(17B)-H(17E)	109.5	H(29D)-C(29B)-H(29E)	109.5
H(17D)-C(17B)-H(17F)	109.5	H(29D)-C(29B)-H(29F)	109.5
H(17E)-C(17B)-H(17F)	109.5	H(29E)-C(29B)-H(29F)	109.5
C(19B)-C(18B)-C(12B)	109.95(16)	C(28B)-C(30B)-H(30D)	109.5
C(19B)-C(18B)-C(20B)	108.89(19)	C(28B)-C(30B)-H(30E)	109.5
C(19B)-C(18B)-C(21B)	108.94(19)	C(28B)-C(30B)-H(30F)	109.5
C(20B)-C(18B)-C(12B)	109.18(16)	H(30D)-C(30B)-H(30E)	109.5
C(20B)-C(18B)-C(21B)	108.17(19)	H(30D)-C(30B)-H(30F)	109.5
C(21B)-C(18B)-C(12B)	111.65(17)	H(30E)-C(30B)-H(30F)	109.5
C(18B)-C(19B)-H(19D)	109.5	C(28B)-C(31B)-H(31D)	109.5
С(18В)-С(19В)-Н(19Е)	109.5	C(28B)-C(31B)-H(31E)	109.5
C(18B)-C(19B)-H(19F)	109.5	C(28B)-C(31B)-H(31F)	109.5
H(19D)-C(19B)-H(19E)	109.5	H(31D)-C(31B)-H(31E)	109.5
H(19D)-C(19B)-H(19F)	109.5	H(31D)-C(31B)-H(31F)	109.5
H(19E)-C(19B)-H(19F)	109.5	H(31E)-C(31B)-H(31F)	109.5
C(18B)-C(20B)-H(20D)	109.5	C(26B)-C(32B)-C(33B)	109.51(16)
C(18B)-C(20B)-H(20E)	109.5	C(26B)-C(32B)-C(34B)	109.16(17)
C(18B)-C(20B)-H(20F)	109.5	C(26B)-C(32B)-C(35B)	111.94(16)
H(20D)-C(20B)-H(20E)	109.5	C(33B)-C(32B)-C(34B)	110.16(18)
H(20D)-C(20B)-H(20F)	109.5	C(35B)-C(32B)-C(33B)	107.76(18)
H(20E)-C(20B)-H(20F)	109.5	C(35B)-C(32B)-C(34B)	108.29(17)
C(18B)-C(21B)-H(21D)	109.5	C(32B)-C(33B)-H(33D)	109.5

C(32B)-C(33B)-H(33E)	109.5	C(49B)-C(44B)-Zr(1B)	100.28(11)
C(32B)-C(33B)-H(33F)	109.5	C(49B)-C(44B)-C(43B)	120.72(17)
H(33D)-C(33B)-H(33E)	109.5	C(44B)-C(45B)-H(45B)	119.0
H(33D)-C(33B)-H(33F)	109.5	C(46B)-C(45B)-C(44B)	121 93(18)
H(33E)-C(33B)-H(33E)	109.5	C(46B)-C(45B)-H(45B)	119.0
C(32B)-C(34B)-H(34D)	109.5	C(45B)-C(46B)-H(46B)	120.0
C(32B)-C(34B)-H(34E)	109.5	C(47B)-C(46B)-C(45B)	120.0
C(32B)-C(34B)-H(34E)	109.5	C(47B) - C(46B) - H(46B)	120.0(2)
H(34D)-C(34B)-H(34F)	109.5	C(46B)-C(47B)-H(47B)	120.0
H(34D)-C(34B)-H(34E)	109.5	C(46B) - C(47B) - C(48B)	119 56(19)
H(34E) - C(34E) - H(34E)	109.5	C(48B)-C(47B)-H(47B)	120.2
C(32B)-C(35B)-H(35D)	109.5	C(48B) - C(48B) - H(48B)	120.2
C(32B) - C(35B) - H(35D)	109.5	C(47B) C(48B) C(40B)	120.80(10)
C(32D) - C(35D) - H(35E) C(32D) - C(35D) - H(35E)	109.5	C(47D) - C(48D) - C(49D)	120.80(19)
U(25D) = U(25D) = U(25D)	109.5	$C(49D)$ - $C(40D)$ - $\Pi(40D)$	119.0
H(35D)-C(35D)-H(35E)	109.5	$C(44D)-C(49D)-\Pi(49D)$	119.0
H(25E) = C(25E) = H(25E)	109.5	C(48D) - C(49D) - C(44D)	120.78(19)
H(35E)-C(35B)-H(35F)	109.5	C(48B)-C(49B)-H(49B)	119.0
$Z_{I}(1B) - C(2(D) - H(2(D))$	114.2	U(51)-U(5)-U(52)	112.4(2)
Zr(1B)-C(36B)-H(36D)	114.2	H(50A) - C(50) - H(50B)	109.5
H(36C)-C(36B)-H(36D)	111.3	H(50A)-C(50)-H(50C)	109.5
C(3/B)-C(36B)-Zr(1B)	86.80(10)	H(50B)-C(50)-H(50C)	109.5
C(3/B)-C(36B)-H(36C)	114.2	C(51)-C(50)-H(50A)	109.5
C(3/B)-C(36B)-H(36D)	114.2	C(51)-C(50)-H(50B)	109.5
C(36B)-C(3/B)-Zr(1B)	59.90(9)	С(51)-С(50)-Н(50С)	109.5
C(38B)-C(3/B)-Zr(1B)	106.87(11)	O(3)-C(51)-C(50)	108.4(2)
C(38B)-C(37B)-C(36B)	122.19(18)	O(3)-C(51)-H(51A)	110.0
C(42B)-C(37B)-Zr(1B)	96.38(11)	O(3)-C(51)-H(51B)	110.0
C(42B)-C(37B)-C(36B)	120.77(17)	C(50)-C(51)-H(51A)	110.0
C(42B)-C(37B)-C(38B)	116.40(17)	C(50)-C(51)-H(51B)	110.0
C(37B)-C(38B)-H(38B)	119.4	H(51A)-C(51)-H(51B)	108.4
C(39B)-C(38B)-C(37B)	121.16(18)	O(3)-C(52)-H(52A)	109.8
C(39B)-C(38B)-H(38B)	119.4	O(3)-C(52)-H(52B)	109.8
C(38B)-C(39B)-H(39B)	119.6	O(3)-C(52)-C(53)	109.4(2)
C(38B)-C(39B)-C(40B)	120.84(18)	H(52A)-C(52)-H(52B)	108.2
C(40B)-C(39B)-H(39B)	119.6	C(53)-C(52)-H(52A)	109.8
C(39B)-C(40B)-H(40B)	120.4	C(53)-C(52)-H(52B)	109.8
C(39B)-C(40B)-C(41B)	119.26(18)	C(52)-C(53)-H(53A)	109.5
C(41B)-C(40B)-H(40B)	120.4	C(52)-C(53)-H(53B)	109.5
C(40B)-C(41B)-H(41B)	119.8	C(52)-C(53)-H(53C)	109.5
C(42B)-C(41B)-C(40B)	120.35(19)	H(53A)-C(53)-H(53B)	109.5
C(42B)-C(41B)-H(41B)	119.8	H(53A)-C(53)-H(53C)	109.5
C(37B)-C(42B)-H(42B)	119.0	H(53B)-C(53)-H(53C)	109.5
C(41B)-C(42B)-C(37B)	121.97(18)	C(52B)-O(3B)-C(51B)	111.13(16)
C(41B)-C(42B)-H(42B)	119.0	H(50D)-C(50B)-H(50E)	109.5
Zr(1B)-C(43B)-H(43C)	113.2	H(50D)-C(50B)-H(50F)	109.5
Zr(1B)-C(43B)-H(43D)	113.2	H(50E)-C(50B)-H(50F)	109.5
H(43C)-C(43B)-H(43D)	110.6	C(51B)-C(50B)-H(50D)	109.5
C(44B)-C(43B)-Zr(1B)	92.32(11)	C(51B)-C(50B)-H(50E)	109.5
C(44B)-C(43B)-H(43C)	113.2	C(51B)-C(50B)-H(50F)	109.5
C(44B)-C(43B)-H(43D)	113.2	O(3B)-C(51B)-C(50B)	107.48(18)
C(43B)-C(44B)-Zr(1B)	55.55(9)	O(3B)-C(51B)-H(51C)	110.2
C(45B)-C(44B)-Zr(1B)	107.78(11)	O(3B)-C(51B)-H(51D)	110.2
C(45B)-C(44B)-C(43B)	121.89(16)	C(50B)-C(51B)-H(51C)	110.2
C(45B)-C(44B)-C(49B)	116.89(17)	C(50B)-C(51B)-H(51D)	110.2

H(51C)-C(51B)-H(51D)	108.5	C(52B)-C(53B)-H(53D)	109.5
O(3B)-C(52B)-H(52C)	109.8	C(52B)-C(53B)-H(53E)	109.5
O(3B)-C(52B)-H(52D)	109.8	C(52B)-C(53B)-H(53F)	109.5
O(3B)-C(52B)-C(53B)	109.48(16)	H(53D)-C(53B)-H(53E)	109.5
H(52C)-C(52B)-H(52D)	108.2	H(53D)-C(53B)-H(53F)	109.5
C(53B)-C(52B)-H(52C)	109.8	H(53E)-C(53B)-H(53F)	109.5
C(53B)-C(52B)-H(52D)	109.8		