

Figure S1. Cyclic voltammogram (a) (scan rate 50 mV s⁻1) and Differential pulse voltammogram (b) (scan rate 5 mV s⁻1) of 1 mM [Fe(L3)Cl₃] in aqueous CTAB micellar solution at 25 °C. Supporting electrolyte: 0.1 M NaCl

Supporting Information

Figure S2. Differential pulse voltammograms of 1mM [Fe(L4)(DBC)²⁻]⁺ in Aqueous solution (a), CTAB (b), SDS (c) and TX-100 (d) micellar solution at 25 °C. Supporting electrolyte: 0.1 M NaCl, Scan rate 5 mV s⁻¹

Figure S3. Cyclic voltammogram (a) (scan rate 50 mV s⁻1) and Differential pulse voltammogram (b) (scan rate 5 mV s⁻1) of 1 mM [Fe(L3)Cl₃] in aqueous solution at 25 °C. Supporting electrolyte: 0.1 M NaCl

Complex	Water	SDS	CTAB	TX-100
$[Fe(L1)Cl_3]$	383(1840)	389(1985)	369(17650)	370(1540)
	295(1265)	286(1260)	285(4120)	284(1770)
	255(1430)	256(1500)	255(5040)	270(1740)
$[Fe(L2)Cl_3]$	388(1650)	379(1590)	362(580)	342 (1460)
	286(1350)	296(4550)	295(7950)	283(4720)
	255(1550)	256(5120)	256(1075)	267(6030)
$[Fe(L3)Cl_3]$	358(1680)	375(1620)	347(1795)	377(1315)
	287(1280)	292(1280)	298(1540)	293(1970)
	253(1520)	253(1520)	258(1630)	269(2110)
$[Fe(L4)Cl_3]$	363(1580)	389(1510)	383(1480)	372(1390)
	287(1530)	297(1660)	296(1450)	289(1660)
	256(1630)	257(1700)	256(1730)	257(1700)

Table S1 Electronic spectral data (λ_{max} in nm, ϵ_{max} in M⁻¹cm⁻¹ in parenthesis) for iron(III) complexes^a in water and micellar media^b

^aConcentration of iron(III) complexes, 2×10^{-4} M.

^bSurfactant concentration: SDS, 13.0×10^{-3} M; CTAB, 6.0×10^{-3} M and TX-100, 12.5×10^{-3} M.

Complex	Epc (V)	Epa (V)	ΔE (mV)	E CV	_{1/2} (V) DPV ^d	Redox process
Water						
$[Fe(L1)Cl_3]$	-0.046	-	-	-	0.042	$Fe^{III} \rightarrow Fe^{II}$
	-	-	-	-	-0.082	LR
$[Fe(L1)Cl_3]+DBC^{2-}$	0.094	0.302	0.210	0.199	0.190	$DBSQ \rightarrow DBC^{2-}$
	-0.672	-	-	-0.512	-0.608	$Fe^{III} \rightarrow Fe^{II} + LR$
SDC						
	0.006				0.062	
$[Fe(L1)Cl_3]$	-0.090	-	-	-	0.002	$Fe^{m} \rightarrow Fe^{m}$
	-0.624	-	-	-	-0.572	LR
$[Fe(L1)Cl_3]+DBC^{2-}$	-0.112	-0.008	0.104	0.060	0.028	$DBSQ \rightarrow DBC^{2-}$
	-0.702	-	-	-	-0.566	$Fe^{III} \rightarrow Fe^{II} + LR$
СТАВ						
[Fe(L1)Cl ₃]	-0.023	-	-	-	0.150	$Fe^{III} \rightarrow Fe^{II}$
	-0.466		-	-	-0.342	LR
[Fe(L1)Cl ₃]+DBC ²⁻	-0.004	0.062	0.058	0.033	0.054	$DBSQ \rightarrow DBC^{2-}$
	-0.502	-	-	-	-0.350	$Fe^{III} \rightarrow Fe^{II} + LR$
TV 100						
$[\mathbf{X}-\mathbf{I}\mathbf{V}\mathbf{V}]$	0.112				0.004	
	-0.112	-	-	-	0.004	$fe^{m} \rightarrow fe^{m}$
	-0.596	-	-	-	-0.456	LK
$[Fe(L1)Cl_3]+DBC^{2-}$	-0.104	-0.012	0.092	-0.058	-0.046	$DBSQ \rightarrow DBC^{2-}$
	-0.684	-	-	-	-0.576	$Fe^{III} \rightarrow Fe^{II} + LR$

Table S2 Electrochemical data^a of [Fe(L1)Cl₃] complexes and its DBC²⁻ adducts in aqueous and aqueous micellar^b (SDS, CTAB, TX-100) solutions at $25 \pm 0.2^{\circ}$ C at a scan rate of 50 mV/s

^aPotential measured (± 0.002 V) vs Calomel electrode (0.01 M, 0.1 M NaCl). Add 0.244 V to convert to NHE. ^bSurfactant concentration: SDS, 8.2×10^{-3} M., CTAB, 1.2×10^{-3} M and TX-100, 3.1×10^{-3} M. ^cReduction of some dissociated species, LR = Ligand Reduction, ^dDifferential pulse voltammetry scan rate, 5 mV/s

Complex	Epc	Epa	ΔE	$E_{1/2}$	(V)	Redox process
	(V)	(V)	(mV)	CV	DPV ^d	
Water						
$[Fe(L2)Cl_3]$	0.178	-	-	-	0.126	c
	-0.078	-	-	-	0.024	$\mathrm{Fe}^{\mathrm{III}} \rightarrow \mathrm{Fe}^{\mathrm{II}}$
	-0.592	-	-	-	-0.452	LR
$[Fe(L2)Cl_3]+DBC^{2-}$	-0.062	-0.024	38	0.043	0.031	$DBSQ \rightarrow DBC^{2-}$
	-	-	-	-	-0.048	c
	-0.632	-	-	-	-0.566	$Fe^{III} \rightarrow Fe^{II} + LR$
SDS						
$[Fe(L2)Cl_3]$	0.167	-	-	-	0.140	$Fe^{III} \rightarrow Fe^{II}$
	-0.680	-	-	-	-0.532	LR
$[Fe(L2)Cl_3]+DBC^{2-}$	-0.020	-0.008	-	0.039	0.032	$DBSQ \rightarrow DBC^{2-}$
	-0.674	-	-	-	-0.500	$Fe^{III} \rightarrow Fe^{II} + LR$
СТАВ						
$[Fe(L2)Cl_3]$	-0.153	-	-	-	0.144	$Fe^{III} \rightarrow Fe^{II}$
	-0.450	-	-	-	-0.318	LR
$[Fe(L2)Cl_3]+DBC^{2-}$	0.192	0.302	110	0.247	0.120	$DBSQ \rightarrow DBC^{2-}$
	-0.346	0.158	188	0.252	-0.474	$Fe^{III} \rightarrow Fe^{II} + LR$
TX-100						
$[Fe(L2)Cl_3]$	0.174	-	-	-	0.180	$\mathrm{Fe}^{\mathrm{III}} \rightarrow \mathrm{Fe}^{\mathrm{II}}$
	-0.666	-	-	-	-0.506	LR
$[Fe(L2)Cl_3]+DBC^{2-}$	-0.012	-0.182	194	0.097	0.092	$DBSQ \rightarrow DBC^{2-}$
	-0.700	-	-	-	-0.578	$Fe^{III} \rightarrow Fe^{II} + LR$

Table S3 Electrochemical data^a of $[Fe(L2)Cl_3]$ complexes and its DBC²⁻ adducts in aqueous and aqueous micellar^b (SDS, CTAB, TX-100) solutions at 25 ± 0.2 °C at a scan rate of 50 mV/s

^aPotential measured (\pm 0. 002 V) vs Calomel electrode (0.01 M, 0.1 M NaCl). Add 0.244 V to convert to NHE.^bSurfactant concentration: SDS, 8.2 × 10⁻³ M., CTAB, 1.2 × 10⁻³ M and TX-100, 3.1 × 10⁻³ M. ^cReduction of some dissociated species, LR = Ligand Reduction,

^dDifferential pulse voltammetry scan rate, 5 mV/s

Complex	Epc (V)	Epa (V)	ΔE (mV)	$\frac{E_{1/2}}{\text{CV}}$	$\frac{2}{2}(V)$	_ Redox process
Water						
$[Fe(L4)Cl_3]$	-0.078	-	-	-	0.024	$Fe^{III} \rightarrow Fe^{II}$
	-0.576	-	-	-	-0.452	LR
$[Fe(L4)Cl_3]+DBC^{2-}$	-0.064	-0.028	0.036	-0.046	-0.048	$DBSQ \rightarrow DBC^{2-}$
	-0.632	-	-	-	-0.566	$Fe^{III} \rightarrow Fe^{II} + LR$
SDS						
$[Fe(L4)Cl_3]$	0.190	-	-	-	0.092	$Fe^{III} \rightarrow Fe^{II}$
	-0.686	-	-	-	-0.532	LR
$[Fe(L4)Cl_3]+DBC^{2-}$	-0.020	-	-	-	-0.032	$DBSQ \rightarrow DBC^{2-}$
	-0.674	-	-	-	-0.500	$Fe^{III} \rightarrow Fe^{II} + LR$
СТАВ						
$[Fe(L4)Cl_3]$	-0.168	-	-	-	0.168	$Fe^{III} \rightarrow Fe^{II}$
	-0.450	-	-	-	-0.324	LR
$[Fe(L4)Cl_3]+DBC^{2-}$	0.124	0.306	0.166	0.213	0.192	$DBSQ \rightarrow DBC^{2-}$
	-0.466	-	-	-	-0.346	$Fe^{III} \rightarrow Fe^{II} + LR$
TX-100						
$[Fe(L4)Cl_3]$	0.174	-	-	-	0.121	$Fe^{III} \rightarrow Fe^{II}$
	-0.070				-0.018	c
	-0.666				-0.506	LR
$[Fe(L4)Cl_3]+DBC^{2-}$	-0.012	0.182	0.194	0.097	0.092	$DBSQ \rightarrow DBC^{2-}$
	-0.700	-	-	-	-0.578	$Fe^{III} \rightarrow Fe^{II} + LR$

Table S4 Electrochemical data^a of $[Fe(L4)Cl_3]$ complexes and its DBC²⁻adducts in aqueous and aqueous micellar^b (SDS, CTAB, TX-100) solutions at 25 ± 2 °C at a scan rate of 50 mV/s

^aPotential measured (± 0. 002 V) vs Calomel electrode (0.01 M, 0.1 M NaCl). Add 0.244 V to convert to NHE.^bSurfactant concentration: SDS, 13.0×10^{-3} M, CTAB, 6.0×10^{-3} M and TX-100, 12.5×10^{-3} M. ^cReduction of some dissociated species, LR = Ligand Reduction, ^dDifferential pulse voltammetry scan rate, 5 mV/s.