Electronic Supplementary Information

Supramolecular Interactions

The complex shows supramolecular layer structure with inter layer separation (shortest nickel-nickel distance) of 9.5781(7) Å. The H atom, H(10B), attached with O(100) of the lattice water forms bifurcated H-bonding with the methoxy oxygen atom O(9) and phenoxy oxygen atom atom, O(8) of Schiff base ligand. Another H atom, H(10A), attached with O(100) of the lattice water is H-bonded with N(24)[#] of a (*PTZ*)⁻ ligand from a symmetry related ([#] = 2-x,1/2+y,5/2-z) molecule. On the other hand, the H atom, H(3), attached with amine nitrogen atom, N(3), is H-bonded with an oxygen atom, O(100)^{*} of a symmetry related (* = 2-x,-y,2-z) water of crystallization. The combination of these three H-bonds resulted a two dimensional H-bonded network as shown in Figure S1. The details of H bonding dimensions are given in Table S3.

The complex also shows significant intra and intermolecular $C-H\cdots\pi$ interactions. One methylene $C(sp^3)$ hydrogen, H(2A) of N-ethyl group C(2) in Schiff base *HL* shows intramolecular interaction with chelate ring Cg(2) produced by *HPTZ* ligand. An aromatic $C(sp^2)$ hydrogen, H11 of phenyl ring is involved in intermolecular interactions with the pyrazine ring Cg(6) of *HPTZ* forming an 1D array in the crystal packing of **1** (Figure S2). Geometric features of the C–H··· π interactions are given in Table S4. Considering the centrosymmetric dimer as a node, each node is connected with two other node by C-H··· π interactions and four other node by hydrogen bonding interactions through water molecule. These combined supramolecular force (C-H··· π interactions and H-bond) creates a 3⁶-**hxl** topological supramolecular network as shown in Figure S3. It is noteworthy that acetonitrile molecule present in the crystal structure is actually

encapsulated as a hydrophobic guest within the 2D supramolecular network as shown in Figure

S7.

O(8) - Ni(1) - N(3)	174.15(6)	N(6) - Ni(1) - N(14)	93.57(6)
O(8) - Ni(1) - N(6)	91.53(6)	N(6) - Ni(1) - N(21)	170.82(6)
O(8) - Ni(1) - N(14)	86.76(6)	$N(6) - Ni(1) - N(22)^*$	93.60(6)
O(8) - Ni(1) - N(21)	90.20(6)	N(14) - Ni(1) - N(21)	77.52(6)
$O(8) - Ni(1) - N(22)^*$	92.06(6)	$N(14) - Ni(1) - N(22)^*$	172.76(6)
N(3) - Ni(1) - N(6)	82.88(6)	$N(21) - Ni(1) - N(22)^*$	95.35(6)
N(3) - Ni(1) - N(14)	91.84(6)	Ni(1) - N(21) - N(22)	139.85(12)
N(3) - Ni(1) - N(21)	95.04(6)	$Ni(1) - N(22)^* - N(21)^*$	124.60(12)
$N(3) - Ni(1) - N(22)^*$	90.03(6)	-	-

 Table S1: Selected bond angles (°) around nickel(II) in complex 1.

Symmetry element: *=2-x,-y,2-z

 Table S2: The details data of the photoluminescence and time-resolved photoluminescence

 decays of complex 1.

Complex	$\lambda_{ex}(nm)$	$\lambda_{em}(nm)$	T ₁ (ns)	T ₂ (ns)	B_1	B_2	χ^2	$<_{ au}>$
1 385	295	413	0.542	2.168	0.519	0.481	1.054933	1.322 ns
	363	436	0.230	0.990	0.101	0.899	1.069045	0.914 ns

D–H…A	D–H	D···A	Н…А	∠D–H···A
O(100)–H(10B)····O(8)	0.82(3)	3.017(2)	2.24(3)	159(3)
O(100)–H(10B)····O(9)	0.82(3)	2.911(2)	2.30(2)	132(3)
$O(100)-H(10A)\cdots N(24)^{\#}$	0.77(3)	2.977(2)	2.22(3)	169(3)
	0.01(0)	2.004(2)	2.12(2)	1.60.(2)
$N(3)-H(3)\cdots O(100)$	0.91(3)	3.004(2)	2.13(3)	160(2)

 Table S3: Hydrogen bond distances (Å) and angles (°) for complex 1.

Symmetry element ^{*} = 2-x,-y,2-z; [#] = 2-x,1/2+y,5/2-z D, donor; H, hydrogen; A, acceptor **Table S4:** Geometric features (distances in Å and angles in degrees) of the C–H··· π interactions obtained for **1**.

Complexes	C–H····Cg(Ring)	H····Cg (Å)	C–H····Cg (°)	C····Cg (Å)
1	C(2)- $H(2a)$ ···Cg(2)	2.71	3.083(2)	103
	$C(11)-H(11)\cdots Cg(6)$	2.98	3.872(2)	157

Cg(2) = Centre of gravity of the ring [Ni(1)-N(14)-C(19)-C(20)-N(21)] and Cg(6) = Centre of gravity of the ring [N(14)-C(15)-C(16)-N(17)-C(18)-C(18)]

Figure S1: Perspective view of (a) H-bonding interaction and (b) two dimensional H-bonded layer structure of complex **1**. Only the relevant hydrogen atoms are shown for clarity. Symmetry element * = 2-x, -y, 2-z; # = 2-x, 1/2+y, 5/2-z.

Figure S2: Perspective view of one dimensional array in crystal packing via $C-H\cdots\pi$ interactions.

Figure S3: (a) Perspective view of two-dimensional supramolecular layer structure highlighting H-bonding and intermolecular C-H··· π interactions (b) A view of 3⁶-hxl topological supramolecular network. The acetonitrile molecules have been omitted for clarity. Red and aquamarine lines represent water mediated hydrogen bonding interactions and intermolecular C-H··· π interactions respectively.

Figure S4: IR spectrum $(450-4000 \text{ cm}^{-1})$ of complex **1**.

Figure S5: The absorption spectrum of complex 1 in DMSO medium.

Figure S6: Cyclic voltammogram of complex 1 in DMSO at room temperature.

Figure S7: Top view (**a**) and side view (**b**) of encapsulated acetonitrile (hydrophobic) molecule in the 2D supramolecular self-assembly of complex **1**. Dinuclear Schiff base complex and water of crystallization forming supramolecular self-assembly has been shown in space-fill model.