Supporting information

Guanine-Copper coordination polymers: Crystal analysis and application as thin film precursors

N. Nagapradeep,^a V. Venkatesh,^a S. K. Tripathi,^b Sandeep Verma^{**a,c}

^{*a*} Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016 (UP), India. ^{*b*} Defence Materials & Stores Research & Development Establishment (DMSRDE), DMSRDE PO, G. T. Road, Kanpur-208013 (UP), India. ^{*c*} DST Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur-208016 (UP), India.

E-mail: sverma@iitk.ac.in

D — H A [#]	DA	HA	D—HA	
1				
N(1)—H(1)Cl(2)	3.145(3)	2.31	163	
$N(2A) - H(2A1)Cl(2)^{i}$	3.435(3)	2.66	150	
N(1A)—H(1A)O(6A) ^{<i>ii</i>}	2.891(3)	2.05	166	
N(1B)—H(1B)Cl(2) ⁱⁱⁱ	3.408(3)	2.56	168	
N(2A)—H(2A2)O(6B) ^{<i>ii</i>}	2.824(4)	2.04	151	
$N(2) - H(2A) Cl(3)^{iv}$	3.360(3)	2.52	165	
$N(2) - H(2B) O(1M)^{\nu}$	2.983(4)	2.20	151	
N(2)—H(2B1)O(2M) ⁱⁱⁱ	2.930(4)	2.11	160	
O(2M)—H2O2O(6A) ^{<i>ii</i>}	2.859(4)	2.54	104	
O(1M)—H2O1Cl(1) ^{<i>vi</i>}	3.160(3)	2.33	166	
$C(8) - H(8) Cl(1)^{vii}$	3.552(3)	2.63	174	
C(8A)—H(8A)O(6)	2.950(5)	2.42	116	
$C(8A)$ — $H(8A)Cl(3)^{vii}$	3.573(4)	2.75	149	
C(8B)—H(8B)Cl(3)	3.656(4)	2.78	157	
C(8B)—H(8B)O(6)	2.972(4)	2.48	113	
$C(11A)$ — $H(11D)Cl(3)^{i}$	3.627(8)	2.79	150	
C(11C)—H(11E)O(1M) ^{viii}	3.182(10)	2.35	149	
C(11C)—H(11E)N(9B)	2.685(11)	2.30	104	
2				
$N(1) - H(1) Cl(2)^{ix}$	3.201(5)	2.38	160	
N(2)—H(2A)Cl(1)	3.403(6)	2.58	160	
$N(2) - H(2B)Cl(2)^{ix}$	3.423(6)	2.67	147	
$C(8) - H(8) Cl(1)^{x}$	3.494(6)	2.69	146	
$C(9) - H(9B) Cl(1)^{x}$	3.616(6)	2.71	156	
$C(11)$ — $H(11)O(6)^{xi}$	3.172(7)	2.24	177	
3				
$N(1) - H(1) Br(2)^{xii}$	3.313(8)	2.50	159	
N(2)—H(2A)Br(1)	3.470(8)	2.64	161	
$N(2) - H(2B) Br(2)^{xii}$	3.473(8)	2.70	150	
$C(8) - H(8) Br(1)^{xiii}$	3.601(9)	2.79	146	
$C(9) - H(9A) Br(1)^{xiii}$	3.687(9)	2.77	158	
$C(11) - H(11) O(6)^{xiv}$	3.212(11)	2.28	175	

Table S1: Selected hydrogen bonding distances (Å) and bond angles (°) in 1–3.

[#]Symmetry of A: (*i*) -1+x,y,z (*ii*) 1-x,1-y,1-z (*iii*) 2-x,1-y,1-z (*iv*) x,-1+y,z (*v*) 1+x,y,z (*vi*) -1+x,-1+y,z (*vii*) 2-x,2-y,-z (*viii*) 1+x,1+y,z (*ix*) 1-x,-y,1-z (*x*) -1+x,1/2-y,-1/2+z (*xi*) 1-x,1/2+y,3/2-z (*xii*) 1+x,y,z (*xiii*) -1+x,1/2-y,-1/2+z (*xiv*) 1-x,1/2+y,1/2-z; where A= acceptor and D= donor

Table S2: Observed bond lengths (Å) between constituent atoms.

Bond	N9-	2	3
	propargyl		
	Guanine ⁴ⁱ		
C2-N1	1.369	1.361	1.364
C2-N2	1.335	1.337	1.332
C2-N3	1.319	1.332	1.326
C4-C5	1.387	1.366	1.366
C4-N9	1.362	1.371	1.363
C4-N3	1.351	1.356	1.367
C5-N7	1.390	1.384	1.391
C5-C6	1.408	1.417	1.421
C6-O6	1.241	1.226	1.228
C6-N1	1.393	1.403	1.401
C8-N7	1.304	1.321	1.308
C8-N9	1.380	1.375	1.376
C9-N9	1.467	1.473	1.482
C9-C10	1.456	1.484	1.470
C10-C11	1.183	1.213	1.214
Cu1-C10		2.053	2.066
Cu1-C11		2.077	2.072
Cu1-N3		2.052	2.051
Cu2-N7		1.952	1.954

and distances (Å) in 3.

Figure S1: (a) Crystal lattice of 3 when viewed along *a*-axis. (b) Corresponding bond lengths

Figure S2: SEM images of thin films from 1–3 ($T_1 = 450$ °C; a, c, e), ($T_2 = 600$ °C; b, d, f).

Figure S3: SEM images of thin films from CuCl₂, CuBr₂ on Si(100) (T₁ = 450 °C; a, c), (T₂ = 600 °C; b, d). scale: 2 μ m.

Figure S4: AFM images of thin film from **1**. (a) AFM image at T_1 [1.9×1.9 µm]. (b) AFM image at T_2 [5×5 µm]. (c & e) 3D image and diameter-height profile of panel [a] respectively. (d & f) 3D image and diameter-height profile of panel [b] respectively.

Figure S5: AFM images of thin film from **2**. (a) AFM image at T_1 [1.9×1.9 µm]. (b) AFM image at T_2 [1.3×1.3 µm]. (c & e) 3D image and diameter-height profile of panel [a] respectively. (d & f) 3D image and diameter-height profile of panel [b] respectively.

Figure S6: AFM images of thin film from **3**. (a) AFM image at T_1 [2.1×2.1 µm]. (b) AFM image at T_2 [0.9×1.3 µm]. (c & e) 3D image and diameter-height profile of panel [a] respectively. (d & f) 3D image and diameter-height profile of panel [b] respectively.

Figure S8: IR spectrum of 2.

ē 50 655 8 129.5547 168.0133 150 180,9837 209.0388 200 244.0065 250 246.0057 254.0362 256.0367 299.0141 80 327.0682 362.0376 350 388.8831 445.0944 461.9355 542.9969 4400 450 500 550 ([L-allyI]+Cu^{II}+MeO)⁺ ([2L+2Cu^{||}+Cl]/3)⁺ 600 L = N9-allylguanine 650 679.8523 700 calculated 243.9896 180.9965 245.9878 750 182.9947 800 850 80 found 180.9837 182.9829 244.0065 246.0057 950 1000 1050 Jul Links

Figure S10: ESI-HRMS of 1.

Figure S11: ESI-HRMS of 2.

Figure S12: ESI-HRMS of 3.

Figure S13: PXRD spectra of complexes.

(i) PXRD pattern of 1. (a) simulated pattern at 100 K (b) observed pattern at 298 K

(ii) PXRD pattern of **2**. (a) simulated pattern at 100 K (b) observed pattern at 298 K

The peak correspondence is marked with symbols. The reason for some of peaks are shifted may be attributed to difference in temperature for simulated and observed PXRD data, which causes a difference in the inter-planar distances, thus changing the θ values.