Supporting Information

Unique Y-shaped Lanthanide Aggregates and Single-molecule Magnets Behaviour for the Dy₄ Analogue

Shufang Xue,^{a, b} Yun-Nan Guo,^{a, b} Lang Zhao,^a Peng Zhang,^{a, b} and Jinkui Tang*^a

Table S1. Selected Bond Distances (Å) and Angles (deg) in Complexes 1-3

Complex 1								
Tb(1)-N(1)	2.546(12)	Tb(2)-O(1)	2.343(9)	Tb(3)-O(2)	2.427(10)	Tb(4)-N(6)		2.640(13)
Tb(1)-N(4)	2.491(12)	Tb(2)-O(2)	2.289(10)	Tb(3)-O(3)	2.527(9)	Tb(4)-N(9)		2.457(13)
Tb(1)-N(16)	2.633(14)	Tb(2)-O(7)	2.331(9)	Tb(3)-O(4)	2.343(10)	Tb(4)-N(11)	2.568(14)
Tb(1)-N(19)	2.457(11)	Tb(2)-O(8)	2.380(10)	Tb(3)-O(5)	2.182(12)	Tb(4)-N(14)	2.447(13)
Tb(1)-O(1)	2.351(9)	Tb(2)-O(10)	2.259(10)	Tb(3)-O(11)	2.468(9)	Tb(4)-O(4)		2.361(10)
Tb(1)-O(8)	2.421(10)	Tb(2)-O(11)	2.526(10)	Tb(3)-O(12)	2.746(11)	Tb(4)-O(7)		2.368(10)
Tb(1)-O(10)	2.436(9)	Tb(2)-O(15)	2.392(13)	Tb(3)-O(16)	2.545(13)	Tb(4)-O(11)	2.535(10)
Tb(1)-O(13)	2.398(10)	Tb(2)-O(19)	2.320(10)	Tb(3)-O(17)	2.423(13)	Tb(4)-O(18)	2.441(11)
Tb(1)-O(14)	2.486(10)	Tb(2)-Tb(3)	3.5992(11)	Tb(3)-O(19)	2.378(11)	Tb(4)-O(19)	2.395(9)
Tb(1)-Tb(2)	3.5307(11)	Tb(2)-Tb(4)	3.6208(11)	Tb(3)-Tb(4)	3.6304(11)			
Tb(1)-O(1)-Tb(2)	97.6(3)	Tb(1)-O(8	8)-Tb(2)	94.7(3)	Tb(1)-O(10)-Tb(2) 97.5(3)		97.5(3)	
Tb(2)-O(2)-Tb(3)	99.4(4)	Tb(2)-O(2	11) - Tb(3)	92.2(3)	Tb(2)-O(19)-Tb(3) 100.0(4		100.0(4)	
Tb(3)-O(4)-Tb(4)	101.0(4)	Tb(3)-O(2	11) - Tb(4)	93.0(3)	Tb(3)-O(1	Tb(3)-O(19)-Tb(4) 99.0(4)		
Tb(2)-O(7)-Tb(4)	100.8(4)	Tb(2)-O(11)-Tb(4)	91.4(3)	Tb(2)-O(1	19)-Tb(4)	100.3(4)	
			Comp	olex 2				
Dy(1)-O(1)	2.349(5)	Dy(2)-O(10)	2.251(6)	Dy(3)-O(5)	2.170(6)	Dy(4)-0	0(4)	2.359(6)
Dy(1)-O(13)	2.379(6)	Dy(2)-O(19)	2.288(5)	Dy(3)-O(4)	2.324(6)	Dy(4)-0	0(7)	2.367(5)
Dy(1)-O(8)	2.404(6)	Dy(2)-O(2)	2.291(6)	Dy(3)-O(19)	2.346(6)	Dy(4)-0	0(19)	2.393(6)
Dy(1)-O(10)	2.419(5)	Dy(2)-O(7)	2.306(6)	Dy(3)-O(16)	2.394(7)	Dy(4)-0	0(18)	2.430(6)
Dy(1)-N(19)	2.442(7)	Dy(2)-O(1)	2.330(5)	Dy(3)-O(2)	2.416(6)	Dy(4)-N	J(14)	2.445(7)
Dy(1)-O(14)	2.469(6)	Dy(2)-O(15)	2.390(7)	Dy(3)-O(11)	2.451(6)	Dy(4)-N	J(9)	2.453(7)
Dy(1)-N(4)	2.487(7)	Dy(2)-O(8)	2.394(5)	Dy(3)-O(17)	2.506(7)	Dy(4)-C	0(11)	2.535(6)
Dy(1)-N(1)	2.568(7)	Dy(2)-O(11)	2.529(5)	Dy(3)-O(3)	2.530(6)	Dy(4)-N	I(11)	2.563(7)
Dy(1)-N(16)	2.634(7)	Dy(2)-Dy(3)	3.5814(5)	Dy(3)-O(12)	2.756(6)	Dy(4)-N	V(6)	2.630(8)
Dy(1)-Dy(2)	3.5183(5)	Dy(3)-Dy(4)	3.6151(6)	Dy(2)-Dy(4)	3.6176(5)			
Dy(1)-O(1)-Dy(2)	97.5(2)	Dy(1)-O(8)-Dy(2)	94.32(19)	Dy(1)-O(10)-Dy(2) 97.7(2)			
Dy(2)-O(2)-Dy(3)	99.1(2)	Dy(2)-O(11)-Dy(3)	91.96(18)	Dy(2)-O(19)-Dy(3) 101.2(2			
Dy(3)-O(4)-Dy(4)	101.0(2)	Dy(3)-O(11) - Dy(4)	92.94(19)	Dy(3)-O(19)-Dy(4) 99.4(2)			
Dy(2)-O(7)-Dy(4)	101.5(2)	Dy(2)-O(11) - Dy(4)	91.19(18)	Dy(2)-O(19)-Dy(4) 101.2(2)			
Complex 3								
Ho(1)-O(1)	2.330(6)	Ho(2)-O(10)	2.249(6)	Ho(3)-O(5)	2.165(6)	Ho(4)-O(4)		2.354(6)
Ho(1)-O(13)	2.356(6)	Ho(2)-O(2)	2.273(6)	Ho(3)-O(4)	2.318(6)	2.318(6) Ho(4)-O(7)		2.360(6)
Ho(1)-O(8)	2.383(6)	Ho(2)-O(19)	2.289(6)	Ho(3)-O(19)	2.340(6)	Ho(4)-O(19)		2.373(6)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \circledcirc The Royal Society of Chemistry 2013

Ho(1)-O(10)	2.413(5)	Ho(2)-O(1)	2.320(5)	Ho(3)-O(16)	2.373(8)	Ho(4)-O(18)		2.397(7)
Ho(1)-O(14)	2.439(6)	Ho(2)-O(15)	2.378(8)	Ho(3)-O(2)	2.409(6)	Ho(4)-N(14)		2.421(8)
Ho(1)-N(19)	2.445(7)	Ho(2)-O(7)	2.295(6)	Ho(3)-O(11)	2.443(6)	Ho(4)-N(9)		2.431(7)
Ho(1)-N(4)	2.476(7)	Ho(2)-O(8)	2.378(6)	Ho(3)-O(17)	2.511(8)	Ho(4)-O(11)		2.535(6)
Ho(1)-N(1)	2.550(7)	Ho(2)-O(11)	2.521(6)	Ho(3)-O(3)	2.517(6)	Ho(4)-N(11)		2.565(8)
Ho(1)-N(16)	2.618(7)	Ho(2)-Ho(3)	3.5646(6)	Ho(3)-O(12)	2.759(6)	Ho(4)-N(6)		2.615(8)
Ho(1)-Ho(2)	3.5114(6)	Ho(2)-Ho(4)	3.5909(6)	Ho(3)-Ho(4)	3.6054(6)			
Ho(1)-O(1)-Ho(2)	98.1(2)	Ho(1)-C	0(8)-Ho(2)	95.0(2)	Ho(1)-O((10)-Ho(2)	97.7(2)	
Ho(2)-O(2)-Ho(3)	99.1(2)	Ho(2)-C	O(11)-Ho(3)	91.8(2)	Ho(2)-O((19)-Ho(3)	100.7(2)	
Ho(3)-O(4)-Ho(4)	101.0(2)	Но(3)-С	0(11)-Ho(4)	92.8(2)	Ho(3)-O	(19)-Ho(4)	99.8(2)	
Ho(2)-O(7)-Ho(4)	101.0(2)	Но(2)-С	0(11)-Ho(4)	90.5(2)	Ho(2)-O((19)-Ho(4)	100.8(2)	

Table S2. Lanthanide Geometry Analysis by SHAPE Software for Complexes 1-3

	Lnl	Ln2	Ln3	Ln4
geometry	mono-capped square antiprism	triangular dodecahedron	mono-capped square antiprism	mono-capped square antiprism
	$(C_{4\mathrm{V}})$	(D_{2d})	$(C_{4\mathrm{V}})$	$(C_{4\mathrm{V}})$
1	2.021	0.942	1.345	1.622
2	1.916	0.929	1.312	1.636
3	1.934	0.985	1.308	1.551

Table S3. Selected Hydrogen Bonds in Complex 2

D-H	d(D-H) (Å)	d(HA) (Å)	<dha(°)< th=""><th>d(DA) (Å)</th><th>А</th></dha(°)<>	d(DA) (Å)	А
N3-H3A	0.88	2.244	156	3.0575	O14[1- <i>x</i> , - <i>y</i> , 1- <i>z</i>]
N8-H8B	0.88	2.631	149	3.4168	O18[- <i>x</i> , 1- <i>y</i> , - <i>z</i>]

Fig. S1 IR spectra of a crystalline sample of complexes 1-3.

Fig. S2 Field dependences of magnetization in the field range 0–70 kOe and temperature range 1.9–5.0 K. Insets: Plots of the reduced magnetization M versus H/T (top) for 1, (middle) for 2 and (bottom) for 3.

Fig. S3 Temperature dependence of the ac susceptibilities of **1** (left) and **3** (right) measured in zero static field at the indicated frequency.

Fig. S4 Frequency dependence of the out-of-phase ac susceptibilities of 2 measured under zero static field.

Fig. S5 Temperature dependence of top) $\chi'T$, and bottom) χ''/χ_0 , where χ' , χ'' , and χ_0 are in-phase-ac, out-of-phase-ac, and dc molar magnetic susceptibilities, respectively, for **2** under zero static field and oscillating at the indicated frequencies.

Fig. S6 Frequency-dependent out-of-phase component of the ac susceptibility of **2** under dc fields of 100, 500 and 1000 Oe at 1.9 K.