Electronic Supplementary Information

Ru^{III}(edta) mediated oxidation of azide in presence of hydrogen peroxide. Azide versus peroxide activation[†]

Debabrata Chatterjee,* Alicja Franke, Maria Oszajca, and Rudi van Eldik*

Figure S1. Difference spectra recorded during titration of 2×10^{-4} M [Ru^{III}(edta)(H₂O)]⁻ with N₃⁻ (4 x 10⁻⁵ – 1 x 10⁻² M) in 0.010 M acetate buffer at pH = 5.0 and 25 °C.

Figure S2. Plot of the relative absorbance at 445 nm versus the azide concentration constructed on the basis of data reported in Figure S1. Experimental conditions: see Figure S1.

Figure S3. Determination of the values of K_1 (a) and K_2 (b) for the reversible binding of azide to $[Ru^{III}(edta)(H_2O)]^{-}$ based on the thermodynamic data shown in Figures S1 and S2.

Fig. S4. Plot of k_{obs} vs. $[N_3^-]$ at 25 °C, pH 5.0 (10 mM acetate buffer), $[Ru^{III}] = 2 \times 10^{-4}$ M.

Figure S5. UV-Vis spectra of (a) final reaction mixture obtained after bleaching of the 445 nm band ($[Ru^{III}(edta)] = 2 \times 10^{-4} \text{ M}$, $[N_3^-] = 1 \times 10^{-3} \text{ M}$ and $[H_2O_2] = 0.02 \text{ M}$, pH 5.0) and (b) solution of $[Ru^{III}(edta)(NO)]^-$ (2 x 10⁻⁴ M) containing $[Ru^V(edta)O]^-$ complex (1 x 10⁻⁵ M) and a trace of nitrite.

Figure S6. Summary of ESI-MS data: a) Spectrum recorded for the solution of 1×10^{-4} M [Ru^{III}(edta)H₂O]⁻ in 1mM acetate buffer at pH = 5; b) Spectrum recorded after addition of 5×10^{-4} M NaN₃ to the solution of a); c) Spectrum recorded after addition of 3.5×10^{-3} M H₂O₂ to the solution of b); d) Reference spectrum of 1×10^{-4} M [Ru^{III}(edta)NO]⁻ in 1mM acetate buffer at pH = 5.

Figure S7. UV-Vis spectral changes and kinetic traces (at 393 and 445 nm) recorded after addition of $0.02 \text{ M H}_2\text{O}_2$ to a solution of $2 \times 10^{-4} \text{ M Ru}^{\text{III}}(\text{edta})(\text{H}_2\text{O})^{-1}$ containing a) $2 \times 10^{-4} \text{ M}$; b) $4 \times 10^{-4} \text{ M}$; c) $1 \times 10^{-3} \text{ M}$ and d) $4 \times 10^{-3} \text{ M}$ NaN₃ in 10 mM acetate buffer at pH 5.0 and 25 °C.

Figure S8. Effect of azide concentration on the rate of reduction of the $[Ru^{V}(edta)O]^{-1}$ complex (determined from the maximum slope of the plots in Fig. 6b). The value of k_{2} derived from the slope (7.5 x 10⁻⁷ s⁻¹) is 7.5 x 10⁻³ M⁻¹ s⁻¹.

Figure S9. Effect of pH on the absorbance versus time traces (at 390 nm) for the oxidation of azide by $[Ru^{V}(edta)O]^{-}$ preformed by reacting $[Ru^{III}(edta)(H_2O)]^{-}$ (1 x 10⁻⁴ M) with H_2O_2 (5 x 10⁻⁴ M). T = 25 °C and $[N_3^{-1}] = 2 \times 10^{-3}$ M.