### **SUPPORTING INFORMATION**

## In Search of Redox Noninnocence between a Tetrazine Pincer Ligand and Monovalent Copper

A. K. Hui,<sup>a</sup> R. L. Lord<sup>b</sup> and K. G. Caulton<sup>a\*</sup>

<sup>a</sup> Indiana University, Department of Chemistry, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA. Fax: 812-855-8300, Tel: 812-855-4798, E-mail: Caulton@indiana.edu.
 <sup>b</sup> Grand Valley State University, Department of Chemistry, Allendale, MI, USA.

### MSC#12122 Single Crystal X-ray structure determination of Cu(btzp)<sub>2</sub>PF<sub>6</sub> Hui

A dark red crystal (approximate dimensions 0.28 x 0.07 x 0.05 mm<sup>3</sup>) was placed onto the tip of a glass capillary and mounted on an Apex Kappa Duo diffractometer and measured at 150(2) K.

A preliminary set of cell constants was calculated from reflections harvested from three sets of 12 frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. The data collection was carried out using Mo K $\alpha$  radiation (graphite monochromator) with a frame time of 90 seconds and a detector distance of 5.0 cm. A randomly oriented region of reciprocal space was surveyed to achieve complete data with a redundancy of 4. Sections of frames were collected with 0.50° steps in  $\omega$  and  $\phi$ . Data to a resolution of 0.84 Å were considered in the reduction. Final cell constants were calculated from the xyz centroids of 6125 strong reflections from the actual data collection after integration (SAINT).<sup>1</sup> The intensity data were corrected for absorption (SADABS).<sup>2</sup> The space group  $P2_1/n$  was determined based on intensity statistics and systematic absences. The structure was solved using SHELXS-97<sup>3</sup> and refined with SHELXL-97.<sup>3</sup> A direct-methods solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding atoms with individual relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0433 and wR2 = 0.1110 (F<sup>2</sup>, all data). The remaining electron density is located along the bonds.

Two solvent molecules, acetonitrile, were found to be present in the crystal lattice, however they are all outside interaction range of copper, as judged by van der Waals radii sums. Hexafluorophosphate, the non-coordinating counterion was found to be disordered (79:21). The unit cell shows no unusual contacts

to  $PF_6^-$  (shortest Cu/P distance is 6.27 Å), and there is one contact of 3.06 Å from a guest MeCN nitrogen to a tetrazine ring carbon (C2).

SAINT, Bruker Analytical X-Ray Systems, Madison, WI, current version.
An empirical correction for absorption anisotropy, R. Blessing, Acta Cryst. A51, 33 - 38 (1995).
SHELXTL-Plus, Bruker Analytical X-Ray Systems, Madison, WI, current version.

### **Electronic spectrum.**

Solid  $Cu(btzp)_2[PF_6]$  is almost black, and with 5mg of this in ~0.5 mL of  $CD_3CN$ , the solution color is black/red. With 1:10 dilution, this solution becomes increasingly red. In addition to showing the three peaks seen in btzp itself (Figure S3), hence assigned as ligand localized, the complex (Figure S1 and S2) has an additional very weak peak in the 400-450 region.



Figure S1. UV-Vis spectrum of 1mM Cu(btzp)<sub>2</sub>PF<sub>6</sub> in acetonitrile from 200 to 2200 nm.



Figure S2. UV-Vis spectrum of  $1 \text{mM} \text{CuL}_2 PF_6$  in acetonitrile from 300 to 700 nm.



Figure S3. UV-Vis spectrum of 0.05 mM btzp in acetonitrile from 200 to 800 nm.

### Reactivity

There has been a good deal of productive activity recently is using pendant Bronsted basicity to promote heterolytic splitting of  $H_2$ : the Bronsted base accepts  $H^+$  and the metal accepts  $H^-$ . We therefore probed

whether such reactivity could exist for  $Cu(btzp)_2^+$ . Exposure of this cation, dissolved in MeCN, to 1 atm of H<sub>2</sub> showed no color change nor any change in the <sup>1</sup>H NMR spectrum over a period of 24 h at 25 °C, indicating that the envisioned heterolysis does not occur. There was not even any reduction to bulk copper metal.

**Electronic structure calculations** were carried out using DFT<sup>1</sup> as implemented in Gaussian09.<sup>2</sup> Geometry optimizations were performed at the B3LYP/LANL2DZ/6-31G(d,p)<sup>3-7</sup> level of theory with no symmetry constraints. All optimized structures were confirmed to have stable wavefunctions,<sup>8-9</sup> and to be local minima by analyzing the harmonic frequencies.<sup>10-11</sup> Cartesian coordinates and frequencies for all optimized species may be found in Tables S1 and S2, respectively. We begin calculations assuming the wavefunction is unrestricted. Calculations that began with an unpaired electron on Cu and another of opposite spin on the ligand(s) collapsed back to a restricted wavefunction. Wavefunction stability analysis also suggested that, for the geometries we tested, the restricted wavefunction is stable with respect to a breaking of the alpha and beta spin densities.

- 3. Vosko, S.H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
- 4. Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37, 785.
- 5. Becke, A.D. J. Chem. Phys. 1993, 98, 5648.
- 6. Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. J. Phys. Chem. 1994, 98, 11623.

- 9. Baurenschmitt, R.; Ahlrichs, R. J. Chem. Phys. 1996, 104, 9047.
- 10. Schlegel, H.B. J. Comput. Chem. 1982, 3, 214.
- 11. Schlegel, H.B. WIREs Comput. Mol. Sci. 2011, 1, 790.

<sup>1.</sup> Parr, R.G.; Yang, W. Density-functional theory of atoms and molecules; Oxford University Press: New York, 1989.

<sup>2.</sup> Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

<sup>7.</sup> a) Hay, P.J.; Wadt, W.R. J. Chem. Phys. **1985**, 82, 270. b) Wadt, W.R.; Hay, P.J. J. Chem. Phys. **1985**, 82, 284. c) Hay, P.J.; Wadt, W.R. J. Chem. Phys. **1985**, 82, 299.

<sup>8.</sup> Schlegel, H.B.; McDouall, J.J. In *Computational Advances in Organic Chemistry*; Oegretir, C.; Csizmadia, I.G., Eds.; Kluwer Academic: Amsterdam, The Netherlands, 1991.

# **Table S1.** Cartesian Coordinates (in Å) for Optimized Structures.

| Cu     | -0.005052 | 0.511502  | -0.023446 |
|--------|-----------|-----------|-----------|
| Ν      | 0.790088  | -0.227229 | -1.921829 |
| С      | 0.255584  | -1.172343 | -2.710081 |
| С      | 1.953134  | 0.335237  | -2.288823 |
| С      | 0.866451  | -1.589992 | -3.900103 |
| С      | 2.632763  | -0.020702 | -3.458822 |
| С      | 2.072233  | -1.001506 | -4.273548 |
| Η      | 0.392122  | -2.355679 | -4.501483 |
| Η      | 3.567730  | 0.467719  | -3.705011 |
| Η      | 2.568697  | -1.303499 | -5.189827 |
| С      | 2.481748  | 1.374634  | -1.376959 |
| С      | 3.370464  | 3.208092  | 0.211394  |
| С      | -1.031120 | -1.767010 | -2.268536 |
| С      | -3.287383 | -2.781467 | -1.536450 |
| Ν      | 1.763331  | 1.671975  | -0.281234 |
| Ν      | 2.212208  | 2.609912  | 0.535861  |
| Ν      | 4.105114  | 2.895571  | -0.882512 |
| Ν      | 3.648302  | 1.965112  | -1.687158 |
| Ν      | -1.555358 | -1.359064 | -1.106404 |
| Ν      | -2.713429 | -1.871630 | -0.729421 |
| Ν      | -2.738766 | -3.214688 | -2.695492 |
| N      | -1.594355 | -2.694531 | -3.067731 |
| С      | -4.606529 | -3.360439 | -1.138456 |
| H      | -4.894657 | -3.002655 | -0.149834 |
| H      | -5.3/51// | -3.0/6459 | -1.86484/ |
| H      | -4.554066 | -4.4529/6 | -1.138618 |
| C      | 3.889886  | 4.285639  | 1.10/166  |
| H      | 3.890074  | J.243812  | 0.5/6905  |
| H      | 3.269383  | 4.368557  | 1.999/11  |
| П<br>N | 4.920040  | 4.0/4/23  | 1.000070  |
|        | -0.784545 | -0.067203 | 1.936870  |
| C      | -1.949070 | 0.01/101  | 2.200004  |
| C      | -0.230022 | -0.930494 | 2.001133  |
| C      | _0 839913 | -1 252820 | 1 026012  |
| C      | -2 047503 | -0 641767 | 4.020912  |
| н      | -3 556639 | 0.762364  | 3 670309  |
| н      | -0 356663 | -1 960039 | 4 689625  |
| н      | -2 536499 | -0 865765 | 5 297627  |
| C      | 1 049395  | -1 559525 | 2 405455  |
| N      | 1 567237  | -1 248227 | 1.211057  |
| N      | 2 725110  | -1 787449 | 0.872483  |
| С      | 3.305498  | -2.625444 | 1.749588  |
| C      | -2.492066 | 1.467942  | 1.264125  |
| N      | -1.783249 | 1.672183  | 0.141186  |
| Ν      | -2.244796 | 2.531200  | -0.752262 |
| С      | -3.405617 | 3.147140  | -0.473650 |
| Ν      | -4.130487 | 2.927505  | 0.649079  |
| Ν      | -3.661131 | 2.075189  | 1.529397  |
|        |           |           |           |

| Ν | 1.620769  | -2.413370 | 3.277792  |
|---|-----------|-----------|-----------|
| Ν | 2.765080  | -2.959465 | 2.944840  |
| С | 4.623087  | -3.234521 | 1.393655  |
| Η | 5.391956  | -2.904488 | 2.099901  |
| Η | 4.566758  | -4.324441 | 1.468255  |
| Η | 4.912910  | -2.946934 | 0.382867  |
| С | -3.940516 | 4.136101  | -1.458096 |
| Η | -3.311533 | 4.163528  | -2.347974 |
| Η | -4.966315 | 3.875300  | -1.734111 |
| Η | -3.973429 | 5.132748  | -1.005875 |
|   |           |           |           |

| Cu | -0.000210 | -0.002729 | -0.182409 |
|----|-----------|-----------|-----------|
| Ν  | -0.001542 | -0.018285 | -2.168494 |
| С  | 0.182810  | -1.184474 | -2.814194 |
| С  | -0.187479 | 1.138011  | -2.831187 |
| С  | 0.187505  | -1.233225 | -4.208166 |
| С  | -0.195127 | 1.165889  | -4.225802 |
| С  | -0.004522 | -0.038844 | -4.911574 |
| Н  | 0.337721  | -2.181955 | -4.710144 |
| Н  | -0.346513 | 2.107073  | -4.741437 |
| Н  | -0.005645 | -0.047055 | -5.996368 |
| С  | -0.367983 | 2.279875  | -1.935527 |
| С  | -0.674194 | 4.214589  | -0.248285 |
| С  | 0.364645  | -2.312666 | -1.901723 |
| С  | 0.672830  | -4.222160 | -0.186414 |
| Ν  | -0.318034 | 1.996770  | -0.604879 |
| Ν  | -0.477850 | 3.002516  | 0.265775  |
| Ν  | -0.724661 | 4.503125  | -1.583331 |
| Ν  | -0.566003 | 3.499384  | -2.429062 |
| Ν  | 0.317019  | -2.009808 | -0.575531 |
| Ν  | 0.477785  | -3.002323 | 0.309552  |
| Ν  | 0.721210  | -4.530465 | -1.517177 |
| Ν  | 0.561564  | -3.539767 | -2.377421 |
| С  | 0.856122  | -5.359032 | 0.767987  |
| Н  | 0.796453  | -5.007805 | 1.798355  |
| Н  | 0.090076  | -6.120963 | 0.593325  |
| Н  | 1.825476  | -5.837879 | 0.597582  |
| С  | -0.856510 | 5.365525  | 0.689356  |
| Н  | -1.827163 | 5.840179  | 0.514613  |
| Н  | -0.793292 | 5.030083  | 1.724766  |
| Н  | -0.092289 | 6.125969  | 0.500842  |
| Ν  | 0.002227  | 0.014144  | 1.928534  |
| С  | -1.144634 | -0.140724 | 2.616204  |
| С  | 1.149946  | 0.180630  | 2.611985  |
| С  | -1.185178 | -0.134584 | 4.014667  |
| С  | 1.192348  | 0.197581  | 4.010330  |
| С  | 0.004069  | 0.037283  | 4.716817  |
| Η  | -2.136159 | -0.263674 | 4.516359  |
| Η  | 2.144008  | 0.334933  | 4.508526  |
| Η  | 0.004797  | 0.046180  | 5.801775  |
| С  | 2.394219  | 0.350442  | 1.822460  |

| Ν | 2.300719  | 0.339931  | 0.490037  |
|---|-----------|-----------|-----------|
| Ν | 3.399183  | 0.489683  | -0.225868 |
| С | 4.555084  | 0.646722  | 0.443436  |
| С | -2.390015 | -0.322489 | 1.831168  |
| Ν | -2.297808 | -0.337165 | 0.498762  |
| Ν | -3.397773 | -0.494426 | -0.213378 |
| С | -4.553802 | -0.632547 | 0.459740  |
| Ν | -4.645531 | -0.624202 | 1.812317  |
| Ν | -3.546130 | -0.465860 | 2.506957  |
| Ν | 3.551043  | 0.505485  | 2.494308  |
| Ν | 4.649122  | 0.656205  | 1.795767  |
| С | 5.815198  | 0.825140  | -0.337629 |
| Н | 6.243537  | 1.812328  | -0.135032 |
| Н | 6.557606  | 0.084040  | -0.027208 |
| Н | 5.616787  | 0.728001  | -1.404972 |
| С | -5.817286 | -0.807002 | -0.316763 |
| Н | -5.604382 | -0.838569 | -1.385246 |
| Н | -6.321203 | -1.728883 | -0.011070 |
| Н | -6.503781 | 0.018910  | -0.104212 |

**Table S2.** Frequencies (in cm<sup>-1</sup>) for Optimized Structures.

| 9.7776   | 12.6871  | 13.7933  |
|----------|----------|----------|
| 23.8243  | 24.0989  | 33.0893  |
| 37.6872  | 39.5819  | 42.5769  |
| 44.3351  | 46.2441  | 51.0939  |
| 53.5812  | 55.3059  | 58.0909  |
| 63.6922  | 67.6537  | 76.9314  |
| 104.8305 | 105.4081 | 108.5190 |
| 117.7926 | 155.8359 | 159.7597 |
| 161.2555 | 164.1570 | 170.1808 |
| 186.8874 | 203.1123 | 257.8860 |
| 264.9846 | 322.7447 | 322.9590 |
| 330.2466 | 330.3778 | 332.6312 |
| 336.1191 | 345.7590 | 346.0653 |
| 357.7656 | 357.9560 | 363.3884 |
| 368.6917 | 370.0150 | 375.6387 |
| 446.3320 | 447.3204 | 454.2999 |
| 458.2784 | 464.8146 | 470.6208 |
| 539.7633 | 541.2536 | 542.2704 |
| 543.4921 | 625.9592 | 626.1606 |
| 630.2989 | 632.1207 | 677.6515 |
| 677.9104 | 684.0636 | 684.4951 |
| 684.9660 | 685.6472 | 699.9920 |
| 700.1039 | 763.0977 | 763.9530 |
| 811.6930 | 811.9128 | 813.9604 |
| 813.9760 | 834.7677 | 836.1348 |
| 865.3456 | 865.6251 | 868.4859 |
| 870.0110 | 885.0505 | 885.5030 |
| 976.8914 | 977.6182 | 983.5236 |
|          |          |          |

| 989.6766  | 990.3871                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1026.1790 | 1036.8338                                                                                                                                                                                                                                                                                                                                                                            |
| 1059.2913 | 1059.4964                                                                                                                                                                                                                                                                                                                                                                            |
| 1060.2314 | 1060.3738                                                                                                                                                                                                                                                                                                                                                                            |
| 1065.6027 | 1066.0993                                                                                                                                                                                                                                                                                                                                                                            |
| 1080.9604 | 1104.1593                                                                                                                                                                                                                                                                                                                                                                            |
| 1115.4888 | 1116.6326                                                                                                                                                                                                                                                                                                                                                                            |
| 1140.7477 | 1164.4956                                                                                                                                                                                                                                                                                                                                                                            |
| 1195.8157 | 1197.3798                                                                                                                                                                                                                                                                                                                                                                            |
| 1300.4038 | 1324.9769                                                                                                                                                                                                                                                                                                                                                                            |
| 1329.4868 | 1329.5588                                                                                                                                                                                                                                                                                                                                                                            |
| 1333.7687 | 1364.3347                                                                                                                                                                                                                                                                                                                                                                            |
| 1397.6426 | 1398.0410                                                                                                                                                                                                                                                                                                                                                                            |
| 1409.5078 | 1436.2558                                                                                                                                                                                                                                                                                                                                                                            |
| 1439.3200 | 1439.4492                                                                                                                                                                                                                                                                                                                                                                            |
| 1460.5577 | 1473.3324                                                                                                                                                                                                                                                                                                                                                                            |
| 1482.3014 | 1482.3656                                                                                                                                                                                                                                                                                                                                                                            |
| 1482.9875 | 1492.0975                                                                                                                                                                                                                                                                                                                                                                            |
| 1501.2410 | 1501.8064                                                                                                                                                                                                                                                                                                                                                                            |
| 1513.0482 | 1518.6847                                                                                                                                                                                                                                                                                                                                                                            |
| 1542.0910 | 1542.8588                                                                                                                                                                                                                                                                                                                                                                            |
| 1549.8905 | 1629.1073                                                                                                                                                                                                                                                                                                                                                                            |
| 1638.5631 | 1638.8618                                                                                                                                                                                                                                                                                                                                                                            |
| 3066.7541 | 3066.9874                                                                                                                                                                                                                                                                                                                                                                            |
| 3129.6102 | 3129.8190                                                                                                                                                                                                                                                                                                                                                                            |
| 3130.6759 | 3176.9972                                                                                                                                                                                                                                                                                                                                                                            |
| 3178.2851 | 3178.6805                                                                                                                                                                                                                                                                                                                                                                            |
| 3219.4630 | 3245.8238                                                                                                                                                                                                                                                                                                                                                                            |
| 3248.2429 | 3248.4076                                                                                                                                                                                                                                                                                                                                                                            |
|           | 989.6766<br>1026.1790<br>1059.2913<br>1060.2314<br>1065.6027<br>1080.9604<br>1115.4888<br>1140.7477<br>1195.8157<br>1300.4038<br>1329.4868<br>1333.7687<br>1397.6426<br>1409.5078<br>1439.3200<br>1460.5577<br>1482.3014<br>1482.9875<br>1501.2410<br>1513.0482<br>1542.0910<br>1549.8905<br>1638.5631<br>3066.7541<br>3129.6102<br>3130.6759<br>3178.2851<br>3219.4630<br>3248.2429 |

| 6.8035   | 13.7833  | 16.3241  |
|----------|----------|----------|
| 21.5758  | 33.2996  | 33.4207  |
| 36.7146  | 44.0440  | 54.1718  |
| 61.1346  | 63.9488  | 79.1806  |
| 80.4371  | 84.2390  | 85.3106  |
| 88.2740  | 94.6730  | 97.3952  |
| 102.7720 | 135.4706 | 158.0567 |
| 159.1948 | 169.3575 | 179.1248 |
| 182.7502 | 192.0939 | 198.6109 |
| 234.4187 | 244.4021 | 266.4980 |
| 290.5676 | 316.4640 | 322.6071 |
| 328.5672 | 333.2201 | 338.1146 |
| 348.3906 | 350.0167 | 353.0445 |
| 366.3154 | 367.2983 | 368.5944 |
| 369.7216 | 373.0886 | 379.0998 |
| 450.0558 | 455.7078 | 455.8467 |
| 466.0911 | 473.0972 | 497.8737 |
| 534.3453 | 542.8742 | 557.1521 |
| 569.7021 | 617.5958 | 626.2136 |
| 634.2170 | 640.3432 | 667.3340 |
| 677.5850 | 679.6695 | 682.2281 |

| 683.0560               | 683.5918  | 703.6398  |
|------------------------|-----------|-----------|
| 707.7344               | 745.7138  | 770.1507  |
| 777.3590               | 786.6469  | 811.1568  |
| 811.5547               | 817.1148  | 836.1574  |
| 846.7929               | 864.1342  | 866.5690  |
| 869 6656               | 870 4385  | 884 9230  |
| 965 1667               | 982 5993  | 985 1978  |
| 988 9900               | 990 8075  | 992 4775  |
| 1021 6939              | 1030 2974 | 1036 5743 |
| 1043 7182              | 1058 6256 | 1058 8036 |
| 1059 0731              | 1050.0250 | 1050.0050 |
| 1065 1206              | 1065 5659 | 1070 7270 |
| 1003.1200              | 1001 5967 | 1002 6146 |
| 1005.4731              | 1104 2572 | 1122.0140 |
| 1093.4430<br>1127 5512 | 11/2 /201 | 11/5 16/7 |
| 1160 6200              | 1143.4391 | 1202 2500 |
| 100.0200               | 1057 7246 | 1202.2598 |
| 1235.7767              | 1207./346 | 1291.4839 |
| 1300.2667              | 1303.4115 | 1319.8/89 |
| 1326.0487              | 1327.8356 | 1338.5891 |
| 1352.5769              | 1358.0020 | 1366.9518 |
| 1396.4994              | 1407.3228 | 1408.6011 |
| 1413.9050              | 1435.3/48 | 1436.03/6 |
| 1438.3724              | 1438.8984 | 1448.5663 |
| 1463.1019              | 1465.1376 | 1473.1908 |
| 1480.9657              | 1481.0788 | 1481.5537 |
| 1481.5761              | 1493.7621 | 1496.8488 |
| 1497.2196              | 1504.2605 | 1521.9198 |
| 1523.4559              | 1523.6632 | 1549.6911 |
| 1551.7230              | 1553.4100 | 1590.1116 |
| 1630.5150              | 1640.9897 | 1643.2650 |
| 3065.6083              | 3065.6481 | 3066.8981 |
| 3067.1590              | 3127.1710 | 3127.1945 |
| 3129.7377              | 3129.8986 | 3174.4308 |
| 3174.5435              | 3180.0678 | 3180.1247 |
| 3220.4716              | 3221.8735 | 3240.0190 |
| 3242.7713              | 3248.6711 | 3250.3522 |
|                        |           |           |