Supplementary Data

Communicated to: Dalton Trans Manuscript Type : Article Manuscript ID : DT-ART-09-2013-052518-R1

Mixed Ligand µ-Phenoxo-bridged Dinuclear Copper(II) Complexes with Diimine Co-ligands: Efficient Chemical Nuclease and Protease Activities and Cytotoxicity

Rangasamy Loganathan,^a Sethu Ramakrishnan,^b Eringathodi Suresh,^c Mallayan Palaniandavar^a* Anvarbatcha Riyasdeen,^d and Mohamad Abdulkadhar Akbarsha^{e,f}

- ^aDepartment of Chemistry, Central University of Tamil Nadu, Thiruvarur 610004, Tamil Nadu, India
- ^bSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
- ^cAnalytical Science Discipline, Central Salt and Marine Chemical Research Institute, Bhavnagar 364 002, India
- ^dDepartment of Animal Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
- ^eMahatma Gandhi-Doerenkamp Center for Alternatives to use of Animals in Life Science Education, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
- ^fVisiting Professor, Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia

^{*}Author to whom correspondence should be addressed *e-mail*: <u>palaniandavarm@gmail.com</u>, <u>palanim51@yahoo.com</u>

Description of Crystal Structure of [Cu(sal)(bpy)(ClO₄)]₂ 1

The bond distances and bond angles observed for $[Cu(sal)(bpy)(ClO_4)]_2$ 1 are in the same ranges as observed for $[Cu(sal)(bpyam)(ClO_4)]_2$,⁵⁹ $[Cu(sal)(acetylphenolato)(ClO_4)]_2$,⁶⁰ [Cu(3-methoxysalicylaldiminato)(bpy)(ClO₄)]₂,⁵⁸ [Cu(4methoxysalicylaldiminato)(bpy)(ClO₄)]₂,⁵⁸ [Cu(5-carboxysalicyaldehydato)(bpy)(ClO₄)],⁶¹ [Cu(5-carboxysalicylaldehydato)(bpy)(H₂O)]₂,⁶¹ and [Cu(sal)(acetylphenolato)(NO₃)].⁶² Also, thev agreement with the monomeric copper(II) complex are in good [Cu(salicylate)(bpy)]•EtOH•H₂O.⁶³

Description of Crystal Structure of [Cu(sal)(phen)(ClO₄)]₂ 2

The bond distances and bond angles observed for $[Cu(sal)(phen)(ClO_4)]_2$ **2** are in the same ranges as observed for the same complex reported already.⁶⁴⁻⁶⁶ Also, they are in good agreement with $[Cu(sal)(4,7-diphenylphen)(H_2O)]_2^{67}$ and [Cu(MeOsalicylate)(phen)], where H(MeOsalicylate) is methoxysalicylic acid.⁶⁸

Description of Crystal Structure of [Cu(sal)(phen)(NO₃)]₂ 2a

The centrosymmetric dimeric structure of **2a** is similar to that of **2**. Upon replacing the perchlorate anion in **2** by nitrate anion to obtain **2a**, negligible changes are observed in the equatorial Cu-N_{imine}, Cu-O1_{phenolate} and Cu-O2_{carbonyl} bond distances. The axial bond Cu-O3 (2.3795(16) Å) involving the oxygen atom of nitrate group in **2a** is longer than the equatorial bonds, which is expected of the presence of two electrons in the d_{z^2} orbital of Cu(II). Interestingly, the tetragonality¹⁶ of **2a** (T, 0.763)^{16,64} is lower than that (T, 0.783) of the perchlorate analogue **2** suggesting that the presence of perchlorate anion leads to a higher static stereochemical distortion. The Cu...Cu separation in **2a** (3.471 Å) is longer than that **2** indicating that the interaction between the two metal centers in the former is weaker. This is supported by the lower O-Cu-O bond angle (168.92(5)°) and smaller Cu–O–Cu bridge angle (94.48°) revealing that the extent of antiferromagnetic interaction in **2a** is stronger than that in **2**.⁵⁸

DNA Binding Studies: UV-Vis Absorption and Emission Spectral Titrations.

The DNA binding affinities of the complexes varying as $5 > 4 > 3 > 2 \sim 2a > 1$, which is the same as that for the observed decrease in order of hypochromism. Similar observations have been made by us earlier for the mononuclear tris-diimine complexes $[Cu(5,6-dmp)_3]^{2+}$, $[Zn(5,6-dmp)_3]^{2+}$ ⁵⁶ and $[Ru(5,6-dmp)_3]^{2+}$,⁷⁵ the mixed ligand complexes $[Ru(NH_3)_4(5,6-dmp)]^{2+}$,⁷⁶ [Cu(imda)(5,6-dmp)],³¹ $[Cu(dipica)(5,6-dmp)]^{2+}$,⁷⁷ $[Cu(pmdt)(5,6-dmp)]^{2+}$,¹⁵ $[Cu(bba)(5,6-dmp)]^{2+}$ ¹⁵ and $[Cu(L-tyr)(5,6-dmp)]^{+}$ ¹⁵ and the dinuclear complexes $[{(5,6-dmp)_2Ru}_2(bpm)]^{4+}$ ⁷⁸ and $[Cu_2(LH)_2(5,6-dmp)(ClO_4)_2]^{2+}$ ¹⁶ bound to CT DNA, all of them containing 5,6-dmp as the co-ligand, and $[Cu(tdp)(3,4,7,8-tmp)]^{2+}$.¹⁴

Circular Dichrosim Spectral Studies.

Similar B to A conformational change have been observed by us earlier for mixed ligand^{31,76-78} mono-^{56,75-77} and dinuclear¹⁶ complexes of 5,6-dmp ligand bound to CT DNA. Similar to **3**, **4** also exhibits a red-shift (14 nm) with a large decrease in intensity of the DNA helicity band and a red-shift (14 nm) with increase in intensity of the positive band (**Figure 4**), which is consistent with a B to A conformational change of DNA on binding of the complex with the four methyl groups on 3,4,7,8-tmp co-ligand effectively placed in DNA grooves. Similar observations made for $[Cu(tdp)(3,4,7,8-tmp)]^+$ complexes bound to CT DNA have been ascribed to B to A conformational change.¹⁴

Complex	λ_{max} , nm (ϵ , N	$(\epsilon, M^{-1} cm^{-1})$			
	Ligand field ^b	LMCT ^c	Ligand based ^d		
[Cu(sal)(bpy)] ⁺ 1	645(160)	372 (4560)	300(32130)		
$[Cu(sal)(phen)]^+ 2$	638(100)	383(2540)	273(24990)		
$[Cu(sal)(phen)]^+$ 2a	636(130)	372 (4620)	269(25820)		
[Cu(sal)(5,6-dmp)] ⁺ 3	632 (170)	380 (3530)	278 (29810)		
[Cu(sal)(3,4,7,8-tmp)] ⁺ 4	628 (160)	384 (3710)	279 (28440)		
$[Cu(sal)(dpq)]^+$ 5	661 (90)	383 (4750)	259 (18530)		

Table S1 Electronic absorption^a spectral properties of Cu(II) complexes

^aIn 5 mM Tris-HCl/50 mM NaCl buffer solution at pH 7.1

^bConcentration, 5×10^{-3} M, ^cConcentration, 2×10^{-5} M, ^dConcentration, 100×10^{-5} M

Complex	g∥	A_{\parallel} (10 ⁻⁴ cm ⁻¹)	$g_{\parallel A_{\parallel}}$ (cm)	\mathbf{g}_{\perp}
[Cu(sal)(bpy)] ⁺ 1	2.228	181	123	2.047
[Cu(sal)(phen)] ⁺ 2	2.235	182	123	2.047
[Cu(sal)(phen)] ⁺ 2a	2.231	181	123	2.045
[Cu(sal)(5,6-dmp)] ⁺ 3	2.234	180	124	2.056
[Cu(sal)(3,4,7,8-tmp)] ⁺ 4	2.235	183	122	2.052
[Cu(sal)(dpq)] ⁺ 5	2.232	190	117	2.050

 Table S2 EPR spectral properties of Cu(II) complexes

^bIn 5 mM Tris-HCl/50 mM NaCl buffer (pH 7.1):acetone (4:1 V/V) glass at 77 K

Complex					$E_{1/2}(V)$	
		$E_{\mathrm{pa}}\left(\mathrm{V}\right)$	$E_{\rm pc}\left({ m V} ight)$	$\Delta E_{\rm p}\left({\rm V}\right)$	CV ^a	DPV ^b
[Cu(sal)(bpy)] ⁺ 1		-0.100	-0.230	0.130	-0.165	-0.160
[Cu(sal)(phen)] ⁺	2	-0.090	-0.170	0.080	-0.130	-0.134
[Cu(sal)(5,6-dmp)] ⁺ 3	3	-0.096	-0.210	0.114	-0.153	-0.154
[Cu(sal)(3,4,7,8-tmp)]]+ 4	-0.070	-0.230	0.160	-0.150	-0.145
[Cu(sal)(dpq)] ⁺	5	-0.020	-0.152	0.132	-0.086	-0.077

Table S3 Electrochemical data of Cu(II) complexes

^aMeasured *vs*.non-aqueous Ag/Ag⁺ reference electrode; add 544 mV [300 mV, Ag/Ag⁺ to SCE + 244 mV, SCE to SHE] to convert to standard hydrogen electrode (SHE); Fc/Fc⁺ couple, $E_{1/2}$, 0.039 V (CV); 0.042 (DPV), Scan rate 50 mV s⁻¹; Supporting electrolyte, *Tetra-N*-butylammonium perchlorate (0.1 mol dm⁻³); Complex concentration, 1 mmol.dm⁻³;

^bDifferential Pulse Voltammetry, scan rate 5 mVs⁻¹; pulse height 25 mV.

Figure S1 ESI-MS spectra of [Cu(sal)(phen)]⁺ **2** (a) and [Cu(sal)(3,4,7,8-tmp)]⁺ **4** (b) in acetonitrile

Figure S2 X-band EPR spectra of [Cu(sal)(phen)]⁺ **2** in 5 mM Tris-HCl/50 mM NaCl buffer (pH 7.1):acetone (4:1 v/v) glass at 77 K. Microwave frequency 9.0753 GHz

Figure S3 Cyclic and differential pulse voltammograms of $[Cu(sal)(phen)]^+$ 2 (0.5 mM) in acetonitrile at 25 °C at 50 mVs⁻¹ and 5 mVs⁻¹ scan rate respectively

Figure S4 ORTEP view of [Cu(sal)(bpy)(ClO)₄]₂ **1** showing atom numbering scheme and displacement ellipsoids (50% probability level)

Figure S5 ORTEP view of $[Cu(sal)(phen)(NO)_3]_2$ **2a** showing atom numbering scheme and displacement ellipsoids (50% probability level)

Figure S6 ORTEP view of [Cu(sal)(3,4,7,8-tmp)(ClO)₄]₂ **4** showing atom numbering scheme and displacement ellipsoids (50% probability level)

Figure S7 Plot of K_{app} vs K_b

Figure S8 Effect of addition of complexes $[Cu(sal)(phen)(ClO_4)_2]_2$ (2), $[Cu(sal)(5,6-dmp)(ClO_4)_2]_2$ (3), $[Cu(sal)(3,4,7,8-tmp)(ClO_4)_2]_2$ (4), $[Cu(sal)(dpq)(ClO_4)_2]_2$ (5) to CT DNA; The relative viscosities *vs* 1/ R; [CT DNA] = 500 μ M. The ethidium bromide and Hoechst were used as control for standard intercalator and groove binding agent, respectivey.

Figure S9A The cleavage of supercoiled pUC19 DNA (40 μ M) by complexes 1 – 5 (80 μ M) with incubation time of 1 h in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.1. Lane 1, DNA control; Lane 2, DNA + Cu(ClO₄)₂·6H₂O; Lane 3, DNA + 1; Lane 4, DNA + 2; Lane 5, DNA + 3; Lane 6, DNA + 4; Lane 7, DNA + 5. Forms SC, NC and LC are Supercoiled, Nicked Circular and Linear Circular DNA respectively

Figure S9B Plot shows % DNA cleavage *vs*. complexes **1** - **5** (100 μ M, lane 3 - 7) for an incubation period of 1 h

А

Figure S10A Gel electrophoresis diagram of cleavage of supercoiled pUC19 DNA (40 μ M) by the complex **5** (80 μ M) in 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and in the presence of different additives at 37 °C. Lane 1, DNA; Lane 2, DNA + **5**; Lane 3, DNA + **5** + NaN₃ (100 μ M); Lane 4, DNA + **5** + DMSO (6 μ L); Lane 5, DNA + **5** + SOD (4 unit); Lane 6, DNA + **5** + Catalase (10 unit); Lane 7, DNA + **5** + Ethanol (6 μ L). Forms SC, NC and LC are Supercoiled, Nicked Circular and Linear Circular DNA respectively

Figure S10B Bar diagram showing the relative amounts of the different DNA forms in the presence of complex **5** and different additives

Figure 11A Gel electrophoresis diagram of cleavage of supercoiled pUC19 DNA (40 μ M) by using various concentrations of complex **5** in a 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and in the presence of ascorbic acid (H₂A, 10 μ M) at 37 °C for 1 h. Lane 1, DNA + H₂A; Lane 2, DNA + H₂A + **5** (5 μ M); Lane 3, DNA + H₂A + **5** (10 μ M); Lane 4, DNA + H₂A + **5** (15 μ M); Lane 5, DNA + H₂A + **5** (20 μ M); Lane 6, DNA + H₂A + **5** (30 μ M); Lane 7, DNA + H₂A + **5** (40 μ M); Lane 8, DNA + H₂A + **5** (50 μ M). Forms SC, NC and LC are Supercoiled, Nicked Circular and Linear Circular DNA respectively

Lane number

Figure 11B Plot shows concentration dependent oxidative cleavage of supercoiled pUC19 DNA with different complex concentrations of **5** (5 – 50 μ M) for 1 h

B

Figure S12A Time dependent cleavage of supercoiled pUC19 DNA (40 μ M) by the complex **5** (100 μ M) in 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and at 37 °C Lane 1, DNA; Lane 2, DNA + **5** (10 min); Lane 3, DNA + **5** (20 min); Lane 4, DNA + **5** (30 min); Lane 5, DNA + **5** (40 min); Lane 6, DNA + **5** (50 min); Lane 7, DNA + **5** (60 min). Forms SC, NC and LC are Supercoiled, Nicked Circular and Linear Circular DNA respectively

Figure S12B Plot shows % DNA cleavage *vs.* time of incubation (0 - 60 min) for complex **5** (100 μ M)

Figure S13 Gel electrophoresis diagram of cleavage of supercoiled pUC19 DNA (40 μ M) by using various concentrations of complex **4** in a 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and in the presence of ascorbic acid (H₂A, 10 μ M) at 37 °C for 1 h. Lane 1, DNA + H₂A; Lane 2, DNA + H₂A + **4** (10 μ M); Lane 3, DNA + H₂A + **4** (20 μ M); Lane 4, DNA + H₂A + **4** (30 μ M); Lane 5, DNA + H₂A + **4** (40 μ M); Lane 6, DNA + H₂A + **4** (50 μ M); Lane 7, DNA + H₂A + **4** (60 μ M); Lane 8, DNA + H₂A + **4** (80 μ M). Forms SC, NC and LC are Supercoiled, Nicked Circular and Linear Circular DNA respectively

Figure S14 Gel electrophoresis diagram of cleavage of supercoiled pUC19 DNA (40 μ M) by the complex **1** - **5** (30 μ M) in the presence of ascorbic acid in 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and in the presence of DMSO (6 μ L) at 37 °C. Lane 1, DNA; Lane 2, DNA + **1** + DMSO; Lane 3, DNA + **2** + DMSO; Lane 4, DNA + **3** + DMSO; Lane 5, DNA + **4** + DMSO; Lane 6, DNA + **5** + DMSO. Forms SC, NC and LC are Supercoiled, Nicked Circular and Linear Circular DNA respectively